当前位置: X-MOL 学术Renew. Sust. Energ. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photocatalytic H2 evolution and CO2 reduction over phosphorus-doped g-C3N4 nanostructures: Electronic, Optical, and Surface properties
Renewable and Sustainable Energy Reviews ( IF 15.9 ) Pub Date : 2020-06-12 , DOI: 10.1016/j.rser.2020.109957
Tahereh Mahvelati-Shamsabadi , Byeong-Kyu Lee

Attaining an extremely efficient photocatalyst has drawn a great deal of attention in the worldwide pursuit of using solar power as an abundant and cheap energy source. Layered compounds have demonstrated a wide range of physicochemical properties that support their potential practical applications. Because dimensionality plays a crucial role in determining fundamental properties of lamellar structure, when they go under exfoliation down to few-layer or monolayer nanosheets, their characteristics will differ from those of their stacked bulks. The photocatalytic properties of these few-layer or mono-layer materials can be improved through in-plane and inter-plane structural modification by doping with metal or non-metal elements. Among the various layered materials, graphitic carbon nitride (g-C3N4) has emerged as one of the most promising photocatalysts due to its metal-free nature, abundance in raw material, thermal and physicochemical stability and suitable bandgap. Although its bulk structure shows a weak photocatalytic activity, its thermally or chemically exfoliated nanosheets demonstrate greatly improved activity. Further, the electronic structure of the nanostructures can be modified by elemental doping with triazine units to activate the π-conjugated system in the photocatalytic reaction. In this review paper, we analyze the latest developments, particularly in the area of phosphorous-doped graphitic carbon nitride (P-doped g–C3N4) photocatalysts and their molecular and structural modifications for improving H2 generation and CO2 conversion to solar fuels.



中文翻译:

磷掺杂的gC 3 N 4纳米结构上的光催化H 2析出和CO 2还原:电子,光学和表面性质

在世界范围内追求将太阳能用作丰富而廉价的能源方面,获得极其有效的光催化剂已引起了广泛的关注。层状化合物具有广泛的物理化学特性,可支持其潜在的实际应用。由于尺寸在决定层状结构的基本特性方面起着至关重要的作用,因此当它们经历剥落直至几层或单层纳米片时,它们的特性将不同于它们的堆积体。这些少数层或单层材料的光催化性能可通过掺杂金属或非金属元素而通过面内和面内结构改性来改善。在各种层状材料中,石墨碳氮化物(gC 3 N 4由于其无金属的性质,原料的丰富性,热和物理化学稳定性以及合适的带隙,已成为最有前途的光催化剂之一。尽管其本体结构显示出弱的光催化活性,但其热剥离或化学剥离的纳米片却显示出大大改善的活性。此外,可以通过用三嗪单元进行元素掺杂来修饰纳米结构的电子结构,以在光催化反应中激活π共轭体系。在这篇综述文章中,我们分析了最新的发展,特别是在磷掺杂的石墨氮化碳(P掺杂的g–C 3 N 4)光催化剂及其在分子和结构上的改进以改善H 2生成和CO 2的领域。 转换为太阳能。

更新日期:2020-06-12
down
wechat
bug