当前位置: X-MOL 学术Polym. Test. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strain and damage sensing in additively manufactured CB/ABS polymer composites
Polymer Testing ( IF 5.0 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.polymertesting.2020.106688
Md Fazlay Rabbi , Vijaya Chalivendra

Abstract In this study, an experimental investigation is performed to observe the electromechanical response of CB (carbon black)/Acrylonitrile butadiene styrene (ABS) additive manufactured composite under quasi-static (tensile, shear, and mode-I fracture) and dynamic (mode-I fracture) loading conditions for the potential damage sensing applications. Dog bone tensile, double v-notch shear, and single edge notch bending (SENB) specimen printed with three different configurations (0°/90°, +45°/-45°, and 0°) are considered for the quasi-static condition. A modified split Hopkinson pressure bar along with high-speed video camera is used for dynamic fracture experiments. Four-point probe technique coupled with a high-resolution data acquisition system is employed to obtain the real-time electrical response. In the case of tensile loading, +45°/-45° printed specimens show a nonlinear change of electrical resistance due to unique failure mode. Under the shear loading, electrical resistance remains unchanged during the elastic deformation. After the damage evolution, +45°/-45° printed specimens exhibit a higher rate of change in electrical resistance due to alignment of the filaments along the maximum principle shear stress direction. For both static and dynamic fracture loading, a minimal change of electrical resistance is observed before crack initiation. However, after the crack initiation, a sharp change of electrical resistance for 0°/90° printed specimens indicates a faster crack propagation as compared to the +45°/-45° printed specimens.

中文翻译:

增材制造的 CB/ABS 聚合物复合材料中的应变和损伤传感

摘要 在本研究中,通过实验研究观察 CB(炭黑)/丙烯腈丁二烯苯乙烯(ABS)添加剂制造的复合材料在准静态(拉伸、剪切和 I 型断裂)和动态(模态断裂)下的机电响应。 -I 断裂)潜在损伤传感应用的负载条件。使用三种不同配置(0°/90°、+45°/-45° 和 0°)打印的狗骨拉伸、双 V 形切口剪切和单边缘切口弯曲 (SENB) 试样被考虑用于准静态状况。改进的分体式霍普金森压力棒和高速摄像机用于动态断裂实验。四点探针技术与高分辨率数据采集系统相结合,用于获得实时电响应。在拉伸载荷的情况下,由于独特的失效模式,+45°/-45° 印刷样品显示出电阻的非线性变化。在剪切载荷下,电阻在弹性变形过程中保持不变。在损伤演变之后,由于细丝沿最大主剪切应力方向对齐,+45°/-45° 印刷样品显示出更高的电阻变化率。对于静态和动态断裂载荷,在裂纹萌生之前观察到电阻的最小变化。然而,在裂纹萌生后,与 +45°/-45° 打印试样相比,0°/90° 打印试样的电阻急剧变化表明裂纹扩展更快。在弹性变形期间电阻保持不变。在损伤演变之后,由于细丝沿最大主剪切应力方向对齐,+45°/-45° 印刷样品显示出更高的电阻变化率。对于静态和动态断裂载荷,在裂纹萌生之前观察到电阻的最小变化。然而,在裂纹萌生后,与 +45°/-45° 打印试样相比,0°/90° 打印试样的电阻急剧变化表明裂纹扩展更快。在弹性变形期间电阻保持不变。在损伤演变之后,由于细丝沿最大主剪切应力方向对齐,+45°/-45° 印刷样品显示出更高的电阻变化率。对于静态和动态断裂载荷,在裂纹萌生之前观察到电阻的最小变化。然而,在裂纹萌生后,与 +45°/-45° 打印试样相比,0°/90° 打印试样的电阻急剧变化表明裂纹扩展更快。对于静态和动态断裂载荷,在裂纹萌生之前观察到电阻的最小变化。然而,在裂纹萌生后,与 +45°/-45° 打印试样相比,0°/90° 打印试样的电阻急剧变化表明裂纹扩展更快。对于静态和动态断裂载荷,在裂纹萌生之前观察到电阻的最小变化。然而,在裂纹萌生后,与 +45°/-45° 打印试样相比,0°/90° 打印试样的电阻急剧变化表明裂纹扩展更快。
更新日期:2020-10-01
down
wechat
bug