当前位置: X-MOL 学术Nonlinear Anal. Hybrid Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Decentralized switched model-based predictive control for distributed large-scale systems with topology switching
Nonlinear Analysis: Hybrid Systems ( IF 3.7 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.nahs.2020.100912
Morteza Alinia Ahandani , Hamed Kharrati , Farzad Hashemzadeh , Mahdi Baradarannia

Abstract This paper proposes a decentralized switched model-based predictive control (DeSwMPC) for handling coupling among subsystems in a distributed switched large-scale system composed of physically interconnected subsystems. In the distributed switched large-scale systems, interactions among subsystems vary over time according to an exogenous input signal named switching signal. The proposed controller aims at stabilizing the origin of the whole closed-loop system while guaranteeing the satisfaction of constraints in the presence of a switching signal. In the DeSwMPC, to consider switching signal effect in variation of network topology, a robust tube-based switched model-based predictive control (SwMPC) is employed as local controller. The SwMPC controllers with switch-robust control invariant (switch-RCI) set as its target set are robust to unknown mode switching. In the employed decentralized model-based predictive control (DeMPC), by assuming interconnections as the additive disturbances, the effect of switch is only reflected on local constraint sets of the nominal subsystems. Simulations are performed on two typical examples. In the first case, the switching times are unknown a priori but the neighborhood sets after switch are known a priori. In the second case, both of them are assumed to be unknown a priori. The obtained results demonstrate that the proposed DeSwMPC satisfies the input and state constraints at all times. They also validate that the closed-loop system converges to the origin.

中文翻译:

具有拓扑切换的分布式大规模系统的基于分散切换模型的预测控制

摘要 本文提出了一种基于分散交换模型的预测控制 (DeSwMPC),用于处理由物理互连子系统组成的分布式交换大规模系统中子系统之间的耦合。在分布式切换大规模系统中,子系统之间的交互根据称为切换信号的外源输入信号随时间变化。所提出的控制器旨在稳定整个闭环系统的原点,同时保证在存在切换信号的情况下满足约束条件。在 DeSwMPC 中,为了考虑网络拓扑变化中的开关信号效应,采用鲁棒的基于管的基于开关模型的预测控制 (SwMPC) 作为本地控制器。将切换鲁棒控制不变量 (switch-RCI) 设置为其目标集的 SwMPC 控制器对未知模式切换具有鲁棒性。在采用分散的基于模型的预测控制(DeMPC)中,通过将互连假设为加性扰动,切换的影响仅反映在标称子系统的局部约束集上。对两个典型例子进行了模拟。在第一种情况下,切换时间是先验未知的,但切换后的邻域集是先验已知的。在第二种情况下,它们都被假定为先验未知。获得的结果表明,所提出的 DeSwMPC 始终满足输入和状态约束。他们还验证了闭环系统收敛到原点。在采用分散的基于模型的预测控制(DeMPC)中,通过将互连假设为加性扰动,切换的影响仅反映在标称子系统的局部约束集上。对两个典型示例进行了仿真。在第一种情况下,切换时间是先验未知的,但切换后的邻域集是先验已知的。在第二种情况下,它们都被假定为先验未知。获得的结果表明,所提出的 DeSwMPC 始终满足输入和状态约束。他们还验证了闭环系统收敛到原点。在采用分散的基于模型的预测控制(DeMPC)中,通过将互连假设为加性扰动,切换的影响仅反映在标称子系统的局部约束集上。对两个典型例子进行了模拟。在第一种情况下,切换时间是先验未知的,但切换后的邻域集是先验已知的。在第二种情况下,它们都被假定为先验未知。获得的结果表明,所提出的 DeSwMPC 始终满足输入和状态约束。他们还验证了闭环系统收敛到原点。在第一种情况下,切换时间是先验未知的,但切换后的邻域集是先验已知的。在第二种情况下,它们都被假定为先验未知。获得的结果表明,所提出的 DeSwMPC 始终满足输入和状态约束。他们还验证了闭环系统收敛到原点。在第一种情况下,切换时间是先验未知的,但切换后的邻域集是先验已知的。在第二种情况下,它们都被假定为先验未知。获得的结果表明,所提出的 DeSwMPC 始终满足输入和状态约束。他们还验证了闭环系统收敛到原点。
更新日期:2020-11-01
down
wechat
bug