当前位置: X-MOL 学术Mater. Sci. Eng. R Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
All-dielectric materials and related nanophotonic applications
Materials Science and Engineering: R: Reports ( IF 31.6 ) Pub Date : 2020-06-12 , DOI: 10.1016/j.mser.2020.100563
Jiahao Yan , Xinyue Liu , Churong Ma , Yingcong Huang , Guowei Yang

Generally, nanophotonics is associated with plasmonic materials and structures made of noble metals such as gold or silver. However, conventional plasmonic materials have several disadvantages restricting their applications. First, plasmonic materials like gold and silver suffer from high optical loss at optical frequencies. Second, noble metals are rare and not proper for large scale fabrication. Third, as a nanoantenna, plasmonic nanoparticles only hold electric dipole-like resonance which cannot tailor and direct the optical field as we want. Therefore, those have driven the intense search for all-dielectric materials (ADMs) which offer unique opportunities for reduced dissipative losses and large resonant enhancement of both electric and magnetic near-fields beyond plasmonic materials.

There are usually three types of ADMs, i.e., firstly high-index ADMs such as silicon, germanium and gallium arsenide, secondly mid-index ADMs such as titanium dioxide, silicon carbide and boron and thirdly low-index ADMs such as silicon dioxide and polymer. ADMs with different refractive indexes bring a lot of freedom to design nanostructures with different optical properties. For example, ADMs with high refractive index and low loss can generate strong Mie resonances for far-field related applications, while ADMs with high absorption and plasmonic-like properties are favorable for near-field applications.

Although many efforts have been devoted to prepare ADMs and study the related nanophotonic applications, researchers still face fundamental challenges: how to control phase, size and shape of building blocks in the synthesis of ADMs, how to fabricate functional nanostructures by using these building blocks, and further how to achieve the transformation from simple nanoparticles synthesis to functional nanostructures fabrication. To address these issues, we have developed a series of unique techniques based on laser ablation in liquids (LAL) for all-dielectric nanomaterials preparation and all-dielectric nanostructures fabrication in recent years. Using LAL, we have prepared a series of high quality all-dielectric nanomaterials. Meanwhile, optical nanoantennas and devices based on ADMs by LAL have demonstrated appreciable figures-of-merit, manifesting great potential for nanophotonics and the next generation optoelectronics.

In this review, we will introduce the latest progresses of ADMs prepared via top-down and bottom-up methods and related applications in nanophotonics. Firstly, we will present the basic optical properties of ADMs. For example, a new branch of nanophotonics has emerged that seeks to manipulate the strong, optically induced electric and magnetic Mie resonances in nanoparticles based on high refractive index ADMs. Then, we will introduce various approaches for the fabrication of ADM-based nanostructures and their merits and demerits, in which we will demonstrate that LAL technique is more suitable to produce different kinds of ADMs compared with traditional top-down and bottom-up fabrication methods. Secondly, we will summarize the nanophotonic applications of ADMs, including the utilization of unique resonant modes in silicon nanoparticles, enhancement of both linear and nonlinear optical signals, biosensing, light trapping and harvesting, and the enhancement of light matter interaction. Finally, we will discuss several strategies for improvement of nanophotonic performances of ADMs. For example, through designing specific ADM nanostructures, we can obtain higher Q factor and better near-field feature. Additionally, recent progresses on active tuning of ADM-based nanodevices are presented which make contributions to the practical use of ADMs.

Overall, ADMs have actually opened a window toward building highly efficient nanophotonic devices from their unique attributes. (i) ADMs contain a group of materials which have varied optical properties. This diversity provides us freedom and possibilities of functional structural design. (ii) Most of ADMs are compatible with mature semiconductor processing technology and have much lower cost compared with plasmonic materials of noble metals. (iii) ADM-based nanostructures can generate intriguing resonant modes, such as magnetic dipole, toroidal, anapole modes and others.



中文翻译:

全介电材料及相关的纳米光子应用

通常,纳米光子学与等离子材料和由贵金属(例如金或银)制成的结构相关。然而,常规的等离子体材料具有限制其应用的若干缺点。首先,诸如金和银的等离子体材料在光频率上遭受高的光损耗。其次,贵金属是​​稀有金属,不适用于大规模制造。第三,作为纳米天线,等离激元纳米粒子仅保持类似于电偶极子的共振,无法像我们所希望的那样调整和引导光场。因此,这些推动了对全电介质材料(ADM)的深入研究,这些材料为降低耗散损耗以及电浆和磁场近等离激子材料的共振增强提供了独特的机会。

通常存在三种类型的ADM,即首先是高指数ADM,例如硅,锗和砷化镓,其次是中指数ADM,例如二氧化钛,碳化硅和硼,其次是低指数ADM,例如二氧化硅和聚合物。具有不同折射率的ADM为设计具有不同光学特性的纳米结构带来了很大的自由度。例如,具有高折射率和低损耗的ADM可以在与远场相关的应用中产生强大的Mie共振,而具有高吸收和类似等离子体的特性的ADM对于近场应用是有利的。

尽管已经为制备ADM和研究相关的纳米光子应用做出了许多努力,但是研究人员仍然面临根本性的挑战:如何在ADM合成中控制结构单元的相,大小和形状,如何通过使用这些结构单元来制造功能性纳米结构,以及如何实现从简单的纳米粒子合成到功能纳米结构制造的转变。为了解决这些问题,近年来,我们开发了一系列基于液体中激光烧蚀(LAL)的独特技术,用于全电介质纳米材料的制备和全电介质纳米结构的制造。使用LAL,我们准备了一系列高质量的全介电纳米材料。同时,LAL的基于ADM的光学纳米天线和设备已展示出可观的品质因数,

在这篇综述中,我们将介绍通过自上而下和自下而上方法制备的ADM的最新进展以及在纳米光子学中的相关应用。首先,我们将介绍ADM的基本光学特性。例如,出现了纳米光子学的一个新分支,该分支试图操纵基于高折射率ADM的纳米颗粒中强的,光诱导的电和磁Mie共振。然后,我们将介绍各种制造基于ADM的纳米结构的方法及其优缺点,其中我们将证明,与传统的自上而下和自下而上的制造方法相比,LAL技术更适合生产不同种类的ADM。 。其次,我们将总结ADM的纳米光子应用,包括在硅纳米颗粒中利用独特的共振模式,增强线性和非线性光学信号,生物传感,光捕获和收集,以及增强光物质相互作用。最后,我们将讨论改善ADM纳米光子性能的几种策略。例如,通过设计特定的ADM纳米结构,我们可以获得更高的Q因子和更好的近场特性。另外,提出了基于ADM的纳米器件的主动调谐的最新进展,这为ADM的实际使用做出了贡献。我们可以获得更高的Q因子和更好的近场特性。另外,提出了基于ADM的纳米器件的主动调谐的最新进展,这为ADM的实际使用做出了贡献。我们可以获得更高的Q因子和更好的近场特性。另外,提出了基于ADM的纳米器件的主动调谐的最新进展,这为ADM的实际使用做出了贡献。

总体而言,ADM实际上已经从其独特的属性打开了构建高效纳米光子器件的窗口。(i)ADM包含一组具有不同光学特性的材料。这种多样性为我们提供了功能结构设计的自由和可能性。(ii)大多数ADM与成熟的半导体加工技术兼容,并且与贵金属等离激元材料相比具有更低的成本。(iii)基于ADM的纳米结构可以产生有趣的共振模式,例如磁偶极,环形,偶极模式等。

更新日期:2020-06-12
down
wechat
bug