当前位置: X-MOL 学术Appl. Microbiol. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives.
Applied Microbiology and Biotechnology ( IF 3.9 ) Pub Date : 2020-06-11 , DOI: 10.1007/s00253-020-10671-3
Małgorzata Ryngajłło 1 , Marzena Jędrzejczak-Krzepkowska 1 , Katarzyna Kubiak 1 , Karolina Ludwicka 1 , Stanisław Bielecki 1
Affiliation  

The strains of the Komagataeibacter genus have been shown to be the most efficient bacterial nanocellulose producers. Although exploited for many decades, the studies of these species focused mainly on the optimisation of cellulose synthesis process through modification of culturing conditions in the industrially relevant settings. Molecular physiology of Komagataeibacter was poorly understood and only a few studies explored genetic engineering as a strategy for strain improvement. Only since recently the systemic information of the Komagataeibacter species has been accumulating in the form of omics datasets representing sequenced genomes, transcriptomes, proteomes and metabolomes. Genetic analyses of the mutants generated in the untargeted strain modification studies have drawn attention to other important proteins, beyond those of the core catalytic machinery of the cellulose synthase complex. Recently, modern molecular and synthetic biology tools have been developed which showed the potential for improving targeted strain engineering. Taking the advantage of the gathered knowledge should allow for better understanding of the genotype–phenotype relationship which is necessary for robust modelling of metabolism as well as selection and testing of new molecular engineering targets. In this review, we discuss the current progress in the area of Komagataeibacter systems biology and its impact on the research aimed at scaled-up cellulose synthesis as well as BNC functionalisation.

Key points
The accumulated omics datasets advanced the systemic understanding of Komagataeibacter physiology at the molecular level.
Untargeted and targeted strain modification approaches have been applied to improve nanocellulose yield and properties.
The development of modern molecular and synthetic biology tools presents a potential for enhancing targeted strain engineering.
The accumulating omic information should improve modelling of Komagataeibacter’s metabolism as well as selection and testing of new molecular engineering targets.


中文翻译:

使用系统级和菌株工程策略来控制Komagataeibacter对纤维素生物合成的控制:当前的进展和观点。

Komagataeibacter属的菌株已被证明是最有效的细菌纳米纤维素生产者。尽管已经开发了数十年,但对这些物种的研究主要集中在通过改变工业相关环境中的培养条件来优化纤维素合成工艺。人们对Komagataeibacter的分子生理学知之甚少,只有少数研究探索了基因工程作为菌株改良策略。直到最近,Komagataeibacter的系统信息该物种已经以代表序列化基因组,转录组,蛋白质组和代谢组的组学数据集的形式积累。在非目标菌株修饰研究中产生的突变体的遗传分析已引起人们对除纤维素合酶复合物的核心催化机制以外的其他重要蛋白质的关注。最近,已开发出现代分子和合成生物学工具,这些工具显示出改进靶向菌株工程技术的潜力。利用收集到的知识,应该可以更好地理解基因型与表型的关系,这对于可靠的代谢建模以及新分子工程靶标的选择和测试是必不可少的。在这篇综述中,我们讨论了驹形细菌领域的最新进展。 系统生物学及其对旨在扩大纤维素合成以及BNC功能化的研究的影响。

要点
累积的组学数据集在分子水平上提高了对Komagataeibacter生理学的系统理解。
已采用无目标和有目标的应变修饰方法来提高纳米纤维素的产量和性能。
现代分子和合成生物学工具的开发为增强靶向菌株的工程设计提供了潜力。
积累的眼科信息应改善Komagataeibacter的代谢模型,以及选择和测试新的分子工程靶标。
更新日期:2020-06-11
down
wechat
bug