当前位置: X-MOL 学术Nanoscale Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First-principles study of Na insertion at TiO2 anatase surfaces: new hints for Na-ion battery design
Nanoscale Advances ( IF 4.6 ) Pub Date : 2020-06-11 , DOI: 10.1039/d0na00230e
Arianna Massaro 1 , Ana B Muñoz-García 2 , Pasqualino Maddalena 2 , Federico Bella 3 , Giuseppina Meligrana 3 , Claudio Gerbaldi 3 , Michele Pavone 1
Affiliation  

Na-ion batteries (NIBs) are attracting widespread interest as a potentially more convenient alternative to current state-of-the-art Li-ion batteries (LIBs), chiefly for large-scale energy storage from renewables. Developing novel active materials is essential for the deployment of NIBs, especially in terms of negative electrodes that can accommodate the larger sodium ions. We focus on TiO2 anatase, which has been proposed as a promising anode material for the overall balance of performance, stability and cost. As the exposed crystal facets in different morphologies of nanostructured anatase can affect the electrochemical performances, here we report a theoretical investigation of Na+ adsorption and migration through (101), (100) and (001) surface terminations, thus explaining the different activities toward sodiation reported in the literature. Energy barriers computed by means of the CI-NEB method at the DFT+U level of theory show that the (001) surface is the most effective termination for Na+ insertion. We also provide a detailed analysis to elucidate that the energy barriers are due to structural modifications of the lattice upon sodiation. From these results we derive new design directions for the development of cheap and effective oxide-based nanostructured electrode materials for advanced NIBs.

中文翻译:

在 TiO2 锐钛矿表面插入钠的第一性原理研究:钠离子电池设计的新提示

钠离子电池 (NIB) 作为当前最先进的锂离子电池 (LIB) 的潜在更方便的替代品,主要用于可再生能源的大规模储能,引起了广泛的兴趣。开发新型活性材料对于 NIB 的部署至关重要,尤其是在可以容纳较大钠离子的负极方面。我们专注于 TiO 2锐钛矿,它已被提议作为性能、稳定性和成本的整体平衡的有前途的负极材料。由于纳米结构锐钛矿不同形态的暴露晶面会影响电化学性能,因此我们在此报告了对 Na +通过(101),(100)和(001)表面末端的吸附和迁移,从而解释了文献中报道的不同的钠化活性。在 DFT+U 理论水平下通过 CI-NEB 方法计算的能垒表明,(001) 表面是 Na +插入的最有效终止。我们还提供了详细的分析,以阐明能量势垒是由于钠化后晶格的结构改变。从这些结果中,我们得出了新的设计方向,用于开发用于先进 NIB 的廉价且有效的氧化物基纳米结构电极材料。
更新日期:2020-07-14
down
wechat
bug