当前位置: X-MOL 学术Simulation › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical investigation of particle trapping in various groove configurations in straight and bent flow channels
SIMULATION ( IF 1.3 ) Pub Date : 2020-06-10 , DOI: 10.1177/0037549720922600
LA Florio 1
Affiliation  

A novel computational technique is applied to investigate particle trapping in straight and bent channel flow paths with various groove configurations in high-speed compressible, particle laden flow. The technique is valid for particle sizes of the same order of magnitude as the groove dimensions and where the particle–flow path, particle–particle, and particle–flow interactions play significant roles in determining the particle motion. The sacrificial grooves within the flow path can remove particles from the flow to reduce particle impact-induced wear. The feasibility of the trapping grooves and the conditions for which they are most beneficial can be gleaned from analysis of the model results. Three groove configurations are studied: a straight groove, a flared groove, and a 45 degree angle groove, for the same groove entrance size, groove depth, and spacing in a straight channel and a channel with a 90 degree bend. A transient maximum of 22% of the particles were trapped for the flared groove for the bent channel and a transient maximum of 15% of the particles for the straight channel configuration. The second groove of the bent channel produces the greatest single groove particle holding of 8.25% of all of the particles for the flared grove configuration. The contributions of the groove positioning, groove shape, gas flow, and particle interaction conditions to the trapping characteristics can be readily obtained from examination of the model results since the modeling technique includes detailed treatment of particle–flow path and flow interactions, allowing for the study of the mechanisms acting to trap the particles within the grooves.

中文翻译:

直线和弯曲流道中各种凹槽结构中颗粒捕获的数值研究

应用一种新的计算技术来研究在高速可压缩、颗粒负载流中具有各种凹槽配置的直线和弯曲通道流路中的颗粒捕获。该技术适用于与凹槽尺寸相同数量级的颗粒尺寸,并且颗粒-流动路径、颗粒-颗粒和颗粒-流相互作用在确定颗粒运动方面起着重要作用。流道内的牺牲槽可以从流中去除颗粒以减少颗粒撞击引起的磨损。从模型结果的分析中可以收集到诱捕槽的可行性和它们最有利的条件。研究了三种凹槽配置:直凹槽、喇叭形凹槽和 45 度角凹槽,对于相同的凹槽入口尺寸,直槽和 90 度弯曲槽中的槽深和间距。对于弯曲通道的喇叭形凹槽,瞬态最大值为 22%,而对于直通道配置,瞬态最大值为 15%。弯曲通道的第二个凹槽产生最大的单个凹槽颗粒容纳量,为喇叭形凹槽配置的所有颗粒的 8.25%。凹槽定位、凹槽形状、气流和颗粒相互作用条件对捕获特性的贡献可以从模型结果的检查中轻松获得,因为建模技术包括对颗粒-流动路径和流动相互作用的详细处理,允许研究将颗粒捕获在凹槽内的机制。并在直线通道和具有 90 度弯曲的通道中间隔。对于弯曲通道的喇叭形凹槽,瞬态最大值为 22%,而对于直通道配置,瞬态最大值为 15%。弯曲通道的第二个凹槽产生最大的单个凹槽颗粒容纳量,为喇叭形凹槽配置的所有颗粒的 8.25%。凹槽定位、凹槽形状、气流和颗粒相互作用条件对捕获特性的贡献可以从模型结果的检查中轻松获得,因为建模技术包括对颗粒-流动路径和流动相互作用的详细处理,允许研究将颗粒捕获在凹槽内的机制。并在直线通道和具有 90 度弯曲的通道中间隔。对于弯曲通道的喇叭形凹槽,瞬态最大值为 22%,而对于直通道配置,瞬态最大值为 15%。弯曲通道的第二个凹槽产生最大的单个凹槽颗粒容纳量,为喇叭形凹槽配置的所有颗粒的 8.25%。凹槽定位、凹槽形状、气流和颗粒相互作用条件对捕获特性的贡献可以从模型结果的检查中轻松获得,因为建模技术包括对颗粒-流动路径和流动相互作用的详细处理,允许研究将颗粒捕获在凹槽内的机制。对于弯曲通道的喇叭形凹槽,瞬态最大值为 22%,而对于直通道配置,瞬态最大值为 15%。弯曲通道的第二个凹槽产生最大的单个凹槽颗粒容纳量,为喇叭形凹槽配置的所有颗粒的 8.25%。凹槽定位、凹槽形状、气流和颗粒相互作用条件对捕获特性的贡献可以从模型结果的检查中轻松获得,因为建模技术包括对颗粒-流动路径和流动相互作用的详细处理,允许研究将颗粒捕获在凹槽内的机制。对于弯曲通道的喇叭形凹槽,瞬态最大值为 22%,而对于直通道配置,瞬态最大值为 15%。弯曲通道的第二个凹槽产生最大的单个凹槽颗粒容纳量,为喇叭形凹槽配置的所有颗粒的 8.25%。凹槽定位、凹槽形状、气流和颗粒相互作用条件对捕获特性的贡献可以从模型结果的检查中轻松获得,因为建模技术包括对颗粒-流动路径和流动相互作用的详细处理,允许研究将颗粒捕获在凹槽内的机制。
更新日期:2020-06-10
down
wechat
bug