当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Confinement-Mediated Phase Behavior of Hydrocarbon Fluids: Insights from Monte Carlo Simulations.
Langmuir ( IF 3.7 ) Pub Date : 2020-06-11 , DOI: 10.1021/acs.langmuir.0c00652
Jiaoyan Li 1 , Qi Rao 1 , Yidong Xia 1 , Michael Hoepfner 2 , Milind D Deo 2
Affiliation  

The phase behavior of hydrocarbon fluids confined in porous media has been reported to deviate significantly from that in the bulk environment due to the existence of sub-10 nm pores. Though experiments and simulations have measured the bubble/dew points and sorption isotherms of hydrocarbons confined in both natural and synthetic nanopores, the confinement effects in terms of the strength of fluid–pore interactions tuned by surface wettability and chemistry have received comparably less discussion. More importantly, the underlying physics of confinement-induced phenomena remain obfuscated. In this work, we studied the phase behavior and capillary condensation of n-hexane to understand the effects of confinement at the molecular level. To systematically investigate the pore effects, we constructed two types of wall confinements; one is a structureless virtual wall described by the Steele potential and the other one is an all-atom amorphous silica structure with surface modified by hydroxyl groups. Our numerical results demonstrated the importance of fluid–pore interaction, pore size, and pore morphology effects in mediating the pressure–volume–temperature (PVT) properties of hydrocarbons. The most remarkable finding of this work was that the saturation pressure predicted from the van der Waals-type adsorption isothermal loop could be elevated or suppressed relative to the bulk phase, as illustrated in the graphical abstract. As the surface energy (i.e., fluid–pore interaction) decreased, the isothermal vapor pressure increased, indicating a greater preference for the fluid to exist in the vapor state. Sufficient reduction of the fluid–pore interactions could even elevate the vapor pressure above that of the bulk fluid.

中文翻译:

限制流体介导的烃流体相行为:蒙特卡洛模拟的见解。

据报道,由于存在低于10 nm的孔隙,限制在多孔介质中的烃类流体的相行为与整体环境中的相行为有很大不同。尽管实验和模拟已经测量了天然和合成纳米孔中烃的气泡/露点和吸附等温线,但关于由表面润湿性和化学性质调节的液-孔相互作用强度的限制效应却受到的讨论相对较少。更重要的是,限制引起的现象的基本物理原理仍然难以理解。在这项工作中,我们研究了n的相行为和毛细管凝聚-己烷以了解分子水平上的限制作用。为了系统地研究孔隙效应,我们构造了两种类型的墙围;一个是由斯蒂尔(Steele)势描述的无结构虚拟壁,另一个是具有被羟基改性的全原子无定形二氧化硅结构。我们的数值结果表明,在介导碳氢化合物的压力-体积-温度(PVT)特性方面,流体-孔隙相互作用,孔径和孔隙形态学效应至关重要。这项工作最显着的发现是,相对于本体相,范德华斯型吸附等温回路预测的饱和压力可以升高或抑制,如图形摘要所示。随着表面能(即流体与孔隙的相互作用)降低,等温蒸气压增加,表明流体更倾向于以蒸气状态存在。充分减少流体与孔之间的相互作用,甚至可能使蒸气压升高至高于散装流体的蒸气压。
更新日期:2020-07-07
down
wechat
bug