当前位置: X-MOL 学术Sci. China Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering 3D electron and ion transport channels by constructing sandwiched holey quaternary metal oxide nanosheets for high-performance flexible energy storage
Science China Materials ( IF 6.8 ) Pub Date : 2020-06-09 , DOI: 10.1007/s40843-020-1340-7
Pingping Yao , Jiali Yu , Jie Zhou , Shuo Zhang , Meng Zhang , Huichao Liu , Bo Yang , Tao Zhang , Caizhen Zhu , Jian Xu

Due to the enhanced electrochemical activities, mixed metal oxides offer new and fascinating opportunities for high-performance supercapacitor electrodes. However, sluggish ionic and electronic kinetics within the electrode fundamentally limit further improvement of their electrochemical performance. To compensate for the deficiency, a flexible electrode (CNTF/Ni-Co-Mn-Mo NS/CNTN) composed of vertically-aligned areolate quaternary metal oxide nanosheets sandwiched between carbon nanotubes (CNTs) is constructed in this study, which demonstrates a unique hierarchical porous structure that can provide three-dimensional transport channels for both ions and electrons. The vertically aligned areolate quaternary metal oxide nanosheets enable increased exposed surface area and paths for ion transport, diffusion and redox reactions, resulting in an evident enhancement in electrochemical activities. Besides, the CNT networks provide improved conductivity, which can accelerate the electron transport. As a result, the flexible supercapacitor based on the CNTF/Ni-Co-Mn-Mo NS/CNTN electrode demonstrates a specific areal capacitance of 3738 mF cm−2, corresponding to a high energy density of 1.17 mW h cm−2, which outperforms most of the flexible devices reported recently. Additionally, excellent flexibility of up to 180° bend and superior performance stability of 87.87% capacitance retention after 10,000 charge-discharge cycles can be obtained. This unique design opens up a new way in the development of flexible energy storage devices with high performance.



中文翻译:

通过构造夹层多孔四元金属氧化物纳米片来工程化3D电子和离子传输通道,以实现高性能柔性储能

由于增强的电化学活性,混合金属氧化物为高性能超级电容器电极提供了新的且引人入胜的机会。但是,电极内缓慢的离子动力学和电子动力学从根本上限制了其电化学性能的进一步提高。为了弥补这一不足,本研究构建了一种柔性电极(CNTF / Ni-Co-Mn-Mo NS / CNTN),该电极由垂直排列的油酸酯季铵金属氧化物纳米片夹在碳纳米管(CNT)之间构成。可以为离子和电子提供三维传输通道的分层多孔结构。垂直排列的油酸酯季铵盐金属氧化物纳米片可增加暴露的表面积和离子传输,扩散和氧化还原反应的路径,导致电化学活性明显增强。此外,CNT网络提供了改进的电导率,可以加速电子传输。结果,基于CNTF / Ni-Co-Mn-Mo NS / CNTN电极的柔性超级电容器具有3738 mF cm的比表面积电容-2,对应于1.17 mW h cm -2的高能量密度,其性能优于最近报道的大多数柔性设备。此外,在经过10,000次充放电循环后,可以获得高达180°弯曲的出色柔韧性和87.87%的电容保持性能。这种独特的设计开辟了开发高性能柔性储能设备的新途径。

更新日期:2020-06-09
down
wechat
bug