当前位置: X-MOL 学术Comp. Part. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A curing model for the numerical simulation within additive manufacturing of soft polymers using peridynamics
Computational Particle Mechanics ( IF 3.3 ) Pub Date : 2020-06-11 , DOI: 10.1007/s40571-020-00337-2
Philipp Hartmann , Christian Weißenfels , Peter Wriggers

Within this paper, the modelling and simulation of extrusion-based Additive Manufacturing (AM) processes of curing polymers is presented. The challenge of the AM is the adjustment of processing parameters. This includes the application of laser radiation to locally accelerate the curing in order to control the final geometry of the implant. Since complex multi-physical coupling effects are hardly predictable by operator experience, numerical simulations are beneficial. When the underlying physical effects of the AM processes are captured correctly within the simulations, a realistic representation of the process is possible. To model the material behaviour during the process, a process-dependent large strain curing model is formulated, considering the stress free curing behaviour of the material. State-of-the-art models are not able to model the fluid-like behaviour of low cured polymers. This needs a formulation that takes into account finite deformations. Hence, the current model is extended to finite plasticity using a process-dependent yield function. This allows the modelling of material spreading in the fluid-like state by simultaneously reducing the accumulation of elastic stored energy, which would lead to an unintentional and non-physical bounce-off behaviour otherwise. For the numerical simulations, an enhanced version of the peridynamic correspondence formulation using fractional subfamilies with associated volume weighting factors is introduced and implemented. Besides the specific laser modelling as a volumetric heat source, a local–non-local coupling of the arising thermo-chemo-mechanical coupled equations is introduced within the peridynamic framework. Within the simulations, the applicability of the plasticity-based approach to model material spreading in the fluid-like state is presented. Finally, the software for extrusion-based printing processes is developed and the complete thermo-chemo-mechanical coupled AM process is simulated. It is shown that higher geometrical precision is obtainable in terms of a reduced material spreading by the application of a laser radiation. The model constitutes the first step of the virtual implant development regarding the optimisation possibilities during the AM process.



中文翻译:

固化动力学模型,用于在软聚合物的增材制造中进行数值模拟

在本文中,基于挤压的增材制造的建模和仿真提出了固化聚合物的(AM)方法。AM的挑战在于调整处理参数。这包括应用激光辐射局部加速固化,以控制植入物的最终几何形状。由于操作员的经验很难预测复杂的多物理场耦合效应,因此数值模拟是有益的。当在仿真中正确捕捉到AM过程的潜在物理影响时,就可以对过程进行真实的表示。为了模拟过程中的材料行为,考虑了材料的无应力固化行为,制定了与过程相关的大应变固化模型。现有技术模型无法对低固化聚合物的流体行为进行建模。这需要考虑有限变形的公式。因此,当前模型使用与过程有关的屈服函数扩展到有限的可塑性。这样可以通过同时减少弹性存储能量的积累来模拟在流体状状态下扩散的材料,否则会导致意外的和非物理的弹跳行为。对于数值模拟,引入并实现了使用分数子族以及相关体积权重因子的围动态对应公式的增强版本。除了将特定的激光建模作为体积热源外,在周动力框架内还引入了所产生的热-化学-机械耦合方程的局部-非局部耦合。在模拟中 提出了基于可塑性的方法模拟材料在流体状态下扩散的适用性。最后,开发了用于基于挤出的印刷过程的软件,并模拟了完整的热-化学-机械耦合的AM过程。结果表明,通过减少应用激光辐射的材料扩散,可以获得更高的几何精度。该模型构成了虚拟植入物开发的第一步,涉及AM过程中的优化可能性。结果表明,通过减少施加激光辐射的材料扩散,可以获得更高的几何精度。该模型构成了虚拟植入物开发的第一步,涉及AM过程中的优化可能性。结果表明,通过减少施加激光辐射的材料扩散,可以获得更高的几何精度。该模型构成了虚拟植入物开发的第一步,涉及AM过程中的优化可能性。

更新日期:2020-06-11
down
wechat
bug