当前位置: X-MOL 学术Mater. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Filon-like integration strategy for calculating exact exchange in periodic boundary conditions: a plane-wave DFT implementation
Materials Theory Pub Date : 2020-04-17 , DOI: 10.1186/s41313-020-00019-9
Eric J Bylaska , Kevin Waters , Eric D Hermes , Judit Zádor , Kevin M Rosso

An efficient and accurate approach for calculating exact exchange and other two-electron integrals has been developed for periodic electronic structure methods. Traditional approaches used for integrating over the Brillouin zone in band structure calculations, e.g. trapezoidal or Monkhorst-Pack, are not accurate enough for two-electron integrals. This is because their integrands contain multiple singularities over the double integration of the Brillouin zone, which with simple integration methods lead to very inaccurate results. A common approach to this problem has been to replace the Coulomb interaction with a screened Coulomb interaction that removes singularities from the integrands in the two-electron integrals, albeit at the inelegance of having to introduce a screening factor which must precomputed or guessed. Instead of introducing screened Coulomb interactions in an ad hoc way, the method developed in this work derives an effective screened potential using a Filon-like integration approach that is based only on the lattice parameters. This approach overcomes the limitations of traditionally defined screened Coulomb interactions for calculating two-electron integrals, and makes chemistry many-body calculations tractable in periodic boundary conditions. This method has been applied to several systems for which conventional DFT methods do not work well, including the reaction pathways for the addition of H2 to phenol and Au$_{20}^{-}$ nanoparticle, and the electron transfer of a charge trapped state in the Fe(II) containing mica, annite.

中文翻译:

用于计算周期性边界条件下的精确交换的类Filon积分策略:平面波DFT实现

对于周期性电子结构方法,已经开发了一种用于计算精确交换和其他两个电子积分的有效且准确的方法。在带结构计算中用于在布里渊区上积分的传统方法(例如梯形或Monkhorst-Pack)对于两电子积分不够准确。这是因为它们的被积物在布里渊区的双重积分中包含多个奇异点,使用简单的积分方法会导致非常不准确的结果。解决该问题的常用方法是用屏蔽的库仑相互作用代替库仑相互作用,该屏蔽的库仑相互作用消除了双电子积分中被积物的奇异性,尽管不必引入必须预先计算或猜测的屏蔽因子。代替以临时方式引入筛选的库仑相互作用,本文中开发的方法使用仅基于晶格参数的类菲隆积分方法来获得有效的筛选电位。这种方法克服了传统上定义的屏蔽库仑相互作用用于计算两个电子积分的局限性,并使化学多体计算在周期性边界条件下易于处理。此方法已应用于常规DFT方法不能很好运行的几种系统,包括向酚和Au $ _ {20} ^ {-} $纳米颗粒中添加H2的反应途径以及电荷的电子转移被困在含Fe(II)的云母,黑铁矿中。这项工作中开发的方法使用仅基于晶格参数的类Filon积分方法获得了有效的筛选电位。这种方法克服了传统上定义的屏蔽库仑相互作用用于计算两个电子积分的局限性,并使化学多体计算在周期性边界条件下易于处理。此方法已应用于常规DFT方法不能很好运行的几种系统,包括向酚和Au $ _ {20} ^ {-} $纳米颗粒中添加H2的反应途径以及电荷的电子转移被困在含Fe(II)的云母,黑铁矿中。在这项工作中开发的方法使用仅基于晶格参数的类Filon积分方法获得了有效的筛选电位。这种方法克服了传统上定义的屏蔽库仑相互作用用于计算两个电子积分的局限性,并使化学多体计算在周期性边界条件下易于处理。此方法已应用于常规DFT方法不能很好运行的几种系统,包括向酚和Au $ _ {20} ^ {-} $纳米颗粒中添加H2的反应途径以及电荷的电子转移被困在含Fe(II)的云母,黑铁矿中。这种方法克服了传统上定义的屏蔽库仑相互作用用于计算两个电子积分的局限性,并使化学多体计算在周期性边界条件下易于处理。此方法已应用于常规DFT方法不能很好运行的几种系统,包括向酚和Au $ _ {20} ^ {-} $纳米颗粒中添加H2的反应途径以及电荷的电子转移被困在含Fe(II)的云母,黑铁矿中。这种方法克服了传统上定义的屏蔽库仑相互作用用于计算两个电子积分的局限性,并使化学多体计算在周期性边界条件下易于处理。此方法已应用于常规DFT方法不能很好运行的几种系统,包括向酚和Au $ _ {20} ^ {-} $纳米颗粒中添加H2的反应途径以及电荷的电子转移被困在含Fe(II)的云母,黑铁矿中。
更新日期:2020-04-17
down
wechat
bug