当前位置: X-MOL 学术Geotherm. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From exploration to operation: research developments in deep geothermal energy
Geothermal Energy ( IF 2.9 ) Pub Date : 2020-05-19 , DOI: 10.1186/s40517-020-00169-6
Alexandra R. L. Kushnir , Markus Loewer

By providing solutions for harnessing subsurface resources, the geosciences will emerge as a critical component of an efficient transition to a low-carbon economy. In particular, the potential for geothermal energy to supply clean base-load energy for heating and electricity worldwide is enormous. If developed appropriately, this georesource will play a decisive role in the global switch to renewable energies.

Geothermal energy exploitation has a strong history in Europe and is a key part of several municipal, national, and European low-carbon energy strategies.Footnote 1 Through the deep geothermal pilot programme at Soultz-sous-Forêts (France) and the recent success of EGSFootnote 2 sites at Rittershoffen (France) and Insheim (Germany), academic and industry leaders have demonstrated that geothermal energy generation is technically achievable even in low-permeability rocks. The economic viability of deep geothermal energy production in low-enthalpy regions has been verified by numerous geothermal heat plants in the Paris Basin (France), as well as the Molasse Basin (Southern Germany).

However, geothermal energy for heat and power production remains novel, as opposed to the norm. The complexity of the exploitation process requires the active participation of experts from a variety of fields. Indeed, key to the development of efficient and sustainable geothermal energy is the pursuit of new integrative approaches. Incorporating geothermal energy into the mainstream of energy production and use requires scientific and technical advances that reduce the cost and risk associated with resource exploration and extend the life of reservoirs and geothermal plants, while working with communities to assess and mitigate environmental risk.

The European Geothermal Workshop (EGW) is an annual gathering that brings together members of the European and international community to discuss interdisciplinary research aimed at advancing all stages of geothermal energy production, from exploration to operation. Started in 2013, this workshop has been organized by the Ecole et Observatoire des Sciences de la Terre (EOST) of the University of Strasbourg and the Karlsruhe Institute of Technology (KIT)’s Geothermal Chair, as a space for students and early career researchers to interact meaningfully with senior researchers and industry leaders. The EGW has grown significantly in recent years: The 6th EGW—held on 10–11 October 2018 in Strasbourg, France—was attended by 140 participants, from 17 countries. Additionally, in 2018, the European Energy Research Alliance (EERA) Geothermal Joint ProgrammeFootnote 3 joined the planning committee of this conference to highlight the importance of seven specific sub-programmes to the continued success of the geothermal energy sector in Europe; the workshop sessions were organized around these seven key topics (SP1–SP7). The EERA-Geothermal sub-programmes include:

  • SP1 Assessment of Geothermal Resources

  • SP2 Exploration of Geothermal Reservoirs

  • SP3 Constructing Geothermal Wells

  • SP4 Resource Development

  • SP5 Energy Conversion Systems

  • SP6 Operation of Geothermal Systems

  • SP7 Sustainability, Environment and Regulatory Framework

  • SP8 Computing and Data Management.Footnote 4

This EGW 2018 article collection brings together a selection of scientific contributions initially presented at the 6th European Geothermal Workshop. The contributions span the range of sub-programmes, including resource assessment, exploration and development and innovative plant operation. They draw on multiple approaches including field exploration, laboratory methods, and numerical modelling. Of the 11 contributions, nine showcase the work of early career researchers.

The deep geothermal potential of the remote Anticosti Island (Canada), located in the carbonate Anticosti sedimentary basin, is assessed by Gascuel et al. (2020). Despite a lack of detailed exploration owing to the remoteness of the location, the authors use sparse bottom-hole data to develop a 3D temperature model of the basement up to 40 km depth. The authors conclude that while geothermal electricity production at Anticosti Island is not currently feasible, the potential for direct geothermal heat use in the basin justifies further resource assessment and exploration.

To help refine heat flow models of the Upper Rhine Graben, Harlé et al. (2019) used experimental techniques to constrain the thermal conductivity of a series of sedimentary rocks under different temperature and saturation conditions. These data are used to calculate heat flow density at the Soultz-sous-Forêts and Rittershoffen geothermal sites and are compared to equilibrium-temperature profiles at these sites. The authors highlight the importance of accounting for temperature and water saturation when determining accurate heat flow density estimates.

The study by Heap et al. (2019) highlights, from a petrophysical standpoint, the heterogeneous nature of the Muschelkalk, an important Triassic lithostratigraphic unit for Upper Rhine Graben geothermal energy exploitation. They present laboratory data—porosity, P-wave velocity, strength, thermal properties, and Young’s modulus—for the Muschelkalk and compare these data with recently acquired data for the Buntsandstein, a Permo-Triassic sequence of sandstones that lies directly beneath the Muschelkalk. The data presented in this study can be used in modelling designed to optimize geothermal energy exploitation in the region.

The role of temperature variations on fracture permeability is explored by Lima et al. (2019) using near-field experiments on granodiorites from the Grimsel Test Site. These flow-through laboratory experiments address the effect of temperature on the hydraulic properties of natural fractures subjected to applied stresses, and quantify changes to fracture surfaces as well as effluent composition. The authors conclude that thermal dilation, mechanical grinding, and pressure dissolution likely control fracture compaction.

Lepillier et al. (2019) couple rock physical data, dense discrete fracture networks, and finite element modelling to assess the dependence of fracture permeability on stress and define conditions for fluid flow through fractures in two geothermal systems located in the Trans-Mexican volcanic belt. Their approach offers a prediction for multiple scenarios of reservoir flow characteristics in these systems, offering new insights that could improve the development of EGS technologies at these sites.

A multidisciplinary approach is used by Duwiquet et al. (2019) to investigate the potential for geothermal exploitation in crustal fault systems, with particular emphasis on the Pontgibaud fault zone in the French Massif Central. This study uses field, laboratory, and X-ray tomography methods to characterize the matrix and fracture contributions to reservoir permeability. These data are then used to inform numerical models that investigate the role of fault dip and permeability on geothermal reservoir potential. This potentially predictive tool can be used to model geothermal targets in large-scale fault systems hosted by basement rocks.

Chen et al. (2019) designed a series of modelling scenarios to simulate and assess the performance of deep borehole exchangers (DBHE) as a function of pipe materials, grout and soil thermal conductivity, geothermal gradient, and groundwater flow. The extended numerical model presented in this study can be used in the design and optimization of DBHE-coupled ground source heat pump systems.

Wang et al. (2019) use a numerical approach to investigate the influencing parameters and uncertainties in the interpretation of borehole logging data. To do this, they simulated different well operation conditions for high-enthalpy wells and create synthetic temperature logs in a newly developed wellbore simulator. The authors provide insights on the key factors influencing well temperature distribution, which can be used to inform the choice of drilling data used to estimate static formation temperature and the design of inverse modelling schemes in future studies.

Vallier et al. (2020) present a new series of 2D and 3D thermo-hydro-mechanical (THM) models that suggest that a contribution of the regional gravity anomalies near geothermal sites in the Upper Rhine Graben—classically attributed to geological features—could be the result of deep, reservoir-scale hydrothermal circulation. Their model predictions show that synthetic gravity variations for the region have a wavelength of about 7.5 km, which is consistent with the width of hydrothermal convection cells in the region. The predicted amplitude of these anomalies is small (~ 20 µGal) and can be resolved by absolute gravimetry and, thus, measurable in the field.

A new statistical, multi-component geothermometer for reservoir temperature estimation is proposed by Ystroem et al. (2020). This new tool requires a significantly reduced geochemical dataset compared to existing approaches and is validated against reservoir temperature measurements in the high-enthalpy Krafla and Reykjanes geothermal systems. This new geothermometer is quick and easy-to-use and provides robust results without the need for sophisticated gas analysis.

Finally, the successful implementation of a binary plant at a geothermal site in Indonesia is presented by Frick et al. (2019). The authors provide technical details and design considerations for the integration of this fully automated binary plant and show that the maximum power capacity of this novel system is 400 kW, with the possibility of attaining 500 kW in the future.

We invite you to explore these rich contributions in more detail.

  1. 1.

    Including the Strasbourg Eurometropole’s Horizon 2030 energy plan, Munich’s District-Heating Vision 2040, ETIP-DG’s Implementation Roadmap for Deep Geothermal, and the upcoming SET Deep Geothermal Implementation Plan.

  2. 2.

    Enhanced Geothermal System.

  3. 3.

    https://www.eera-geothermal.eu.

  4. 4.

    Added in 2019, after EGW 2018.

  1. Chen C, Shao H, Naumov D, Kong Y, Tu K, Kolditz O. Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating. Geotherm Energy. 2019;7:18.

    Article Google Scholar

  2. Duwiquet H, Arbaret L, Guillou-Frottier L, Heap MJ, Bellanger M. On the geothermal potential of crustal fault zones: a case study from the Pontgibaud area (French Massif Central, France). Geotherm Energy. 2019;7:33.

    Article Google Scholar

  3. Frick S, Kranz S, Kupfermann G, Saadat A, Huenges E. Making use of geothermal brine in Indonesia: binary demonstration power plant Lahendong/Pangolombian. Geotherm Energy. 2019;7:30.

    Article Google Scholar

  4. Gascuel V, Bédard K, Comeau FA, Raymond J, Malo M. Geothermal resource assessment of remote sedimentary basins with sparse data: lessons learned from Anticosti Island, Canada. Geotherm Energy. 2020;8:3.

    Article Google Scholar

  5. Harlé P, Kushnir ARL, Aichholzer C, Heap MJ, Hehn R, Maurer V, Baud P, Richard A, Genter A, Duringer P. Heat flow density estimates in the Upper Rhine Graben using laboratory measurements of thermal conductivity on sedimentary rocks. Geotherm Energy. 2019;7:38.

    Article Google Scholar

  6. Heap MJ, Kushnir ARL, Gilg HA, Violay MES, Harlé P, Baud P. Petrophysical properties of the Muschelkalk from the Soultz-sous-Forêts geothermal site (France), an important lithostratigraphic unit for geothermal exploitation in the Upper Rhine Graben. Geotherm Energy. 2019;7:27.

    Article Google Scholar

  7. Lepillier B, Daniilidis A, Doonechaly Gholizadeh N, Bruna PO, Kummerow J, Bruhn D. A fracture flow permeability and stress dependency simulation applied to multi-reservoirs, multi-production scenarios analysis. Geotherm Energy. 2019;7:24.

    Article Google Scholar

  8. Lima MG, Vogler D, Querci L, Madonna C, Hattendorf B, Saar MO, Kong XZ. Thermally driven fracture aperture variation in naturally fractured granites. Geotherm Energy. 2019;7:23.

    Article Google Scholar

  9. Vallier B, Magnenet V, Schmittbuhl J, Fond C. THM modeling of gravity anomalies related to deep hydrothermal circulation at Soultz-sous-Forêts (France). Geotherm Energy. 2020;8:13. https://doi.org/10.1186/s40517-020-00167-8.

    Article Google Scholar

  10. Wang J, Nitschke F, Gholami Korzani M, Kohl T. Temperature log simulations in high-enthalpy boreholes. Geotherm Energy. 2019;7:32.

    Article Google Scholar

  11. Ystroem LH, Nitschke F, Held S, Kohl T. A multicomponent geothermometer for high-temperature basalt settings. Geotherm Energy. 2020;8:2.

    Article Google Scholar

Download references

Financial support of the 6th European Geothermal Workshop was provided by the LabEx G-eau-thermie Profonde hosted by the Ecole et Observatoire des Sciences de la Terre (EOST–Strasbourg University/CNRS), the European Energy Research Alliance’s Geothermal Joint Programme (EERA Geothermal), and the Université Franco-Allemande (UFA). The scientific committee of the workshop was composed of representatives from the LabEx, EERA, and the Karlsruhe Institute of Technology’s Geothermal Chair.

Affiliations

  1. Université de Strasbourg, CNRS, IPGS, UMR 7516, 67000, Strasbourg, France
    • Alexandra R. L. Kushnir
  2. Geothermal Alliance Bavaria, Munich School of Engineering, Technical University of Munich, Munich, Germany
    • Markus Loewer
Authors
  1. Alexandra R. L. KushnirView author publicationsYou can also search for this author in
    • PubMed
    • Google Scholar
  2. Markus LoewerView author publicationsYou can also search for this author in
    • PubMed
    • Google Scholar

Contributions

ARLK and ML wrote the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Alexandra R. L. Kushnir.

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

Kushnir, A.R.L., Loewer, M. From exploration to operation: research developments in deep geothermal energy. Geotherm Energy 8, 15 (2020). https://doi.org/10.1186/s40517-020-00169-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s40517-020-00169-6



中文翻译:

从勘探到运营:深层地热能的研究进展

通过提供利用地下资源的解决方案,地球科学将成为有效过渡到低碳经济的重要组成部分。特别是,地热能在全世界范围内为清洁供热和电力提供清洁的基本负荷能量的潜力是巨大的。如果开发得当,这种地球资源将在全球向可再生能源的转换中起决定性作用。

地热能开发在欧洲有着悠久的历史,是一些市政,国家和欧洲低碳能源战略的重要组成部分。脚注1通过法国Soultz-sous-Forêts的深层地热试点计划以及最近在Rittershoffen(法国)和Insheim(德国)的EGS脚注2站点的成功,学术和行业领导者证明了地热能的生产在技术上是可以实现的即使在低渗透率的岩石中 低焓区深层地热能生产的经济可行性已得到巴黎盆地(法国)和莫拉塞盆地(德国南部)众多地热发电厂的验证。

然而,与常规相反,用于热能和发电的地热能仍然是新颖的。开发过程的复杂性要求来自各个领域的专家积极参与。确实,开发高效和可持续的地热能的关键是追求新的整合方法。将地热能纳入能源生产和使用的主流需要科学和技术进步,以降低与资源勘探相关的成本和风险,并延长水库和地热电厂的寿命,同时与社区合作评估和减轻环境风险。

欧洲地热研讨会(EGW)是一年一度的聚会,汇聚了欧洲和国际社会的成员,讨论跨学科研究,旨在推进从勘探到运营的地热能源生产的各个阶段。该研讨会于2013年开始,由斯特拉斯堡大学的生态学与观测大学(EOST)和卡尔斯鲁厄技术学院(KIT)的地热主席组织,为学生和早期职业研究人员提供了一个空间与高级研究人员和行业领导者进行有意义的互动。EGW近年来发展迅速:第六届EGW于2018年10月10日至11日在法国斯特拉斯堡举行,来自17个国家的140名参与者参加了此次会议。此外,在2018年,欧洲能源研究联盟(EERA)地热联合计划脚注3加入了本次会议的计划委员会,着重强调了七个具体的子计划对于欧洲地热能源行业持续成功的重要性;研讨会会议围绕这七个关键主题(SP1-SP7)进行了组织。EERA-地热子计划包括:

  • SP1地热资源评估

  • SP2地热储层勘探

  • SP3建造地热井

  • SP4资源开发

  • SP5能量转换系统

  • SP6地热系统的运行

  • SP7可持续性,环境和法规框架

  • SP8计算和数据管理。脚注4

该EGW 2018文章集汇集了最初在第六届欧洲地热研讨会上提出的一系列科学贡献。捐款涵盖了次级方案的范围,包括资源评估,勘探和开发以及创新的工厂运营。他们采用了多种方法,包括野外勘探,实验室方法和数值建模。在这11篇论文中,有9篇展示了早期研究人员的工作。

Gascuel等人评估了位于碳酸盐岩Anticosti沉积盆地中的偏远的Anticosti岛(加拿大)的深层地热潜力。(2020)。尽管由于位置偏远而缺乏详细的探索,但作者仍使用稀疏的井底数据来开发地下室的3D温度模型,深度可达40 km。作者得出的结论是,尽管目前尚无法在Anticosti岛进行地热发电,但该盆地直接利用地热的潜力证明了进一步进行资源评估和勘探的合理性。

为了帮助完善上莱茵河格拉本的热流模型,哈雷等人。(2019)使用实验技术来限制一系列沉积岩在不同温度和饱和条件下的热导率。这些数据用于计算Soultz-sous-Forêts和Rittershoffen地热站点的热流密度,并与这些站点的平衡温度曲线进行比较。作者强调了在确定准确的热流密度估算值时考虑温度和水饱和度的重要性。

Heap等人的研究。(2019)从岩石物理角度突出了Muschelkalk的非均质性质,Muschelkalk是上莱茵格拉本地热能源开发的重要三叠纪岩石地层学单元。他们提供了Muschelkalk的实验室数据(孔隙率,P波速度,强度,热性质和杨氏模量),并将这些数据与Buntsandstein(位于Muschelkalk下方的Permo-Triassic砂岩序列)最近获得的数据进行了比较。本研究中提供的数据可用于优化该地区地热能开发的建模中。

Lima等人探讨了温度变化对裂缝渗透率的作用。(2019)使用来自格里姆瑟尔试验场的花岗闪长岩的近场实验。这些流通实验室实验解决了温度对施加应力的天然裂缝的水力特性的影响,并量化了裂缝表面和流出物成分的变化。作者得出的结论是,热膨胀,机械研磨和压力溶解可能控制裂缝的压实。

Lepillier等。(2019)结合岩石物理数据,密集的离散裂缝网络和有限元建模来评估裂缝渗透率对应力的依赖关系,并确定流体穿过横穿墨西哥火山带的两个地热系统中的裂缝的条件。他们的方法为这些系统中的储层流特征的多种情况提供了预测,并提供了可以改善这些地点的EGS技术发展的新见解。

Duwiquet等人使用了多学科方法。(2019)研究了地壳断层系统中地热开采的潜力,特别着重于法国地块中部的蓬吉鲍德断层带。这项研究使用现场,实验室和X射线断层扫描方法来表征基质和裂缝对储层渗透率的贡献。然后,这些数据将用于为研究断层倾角和渗透率对地热储层电势作用的数值模型提供信息。该潜在的预测工具可用于对由地下岩石托管的大型断层系统中的地热目标进行建模。

Chen等。(2019)设计了一系列建模方案,以模拟和评估深孔换热器(DBHE)的性能,该性能取决于管道材料,灌浆和土壤的导热系数,地热梯度以及地下水流量。本研究中提出的扩展数值模型可用于DBHE耦合地源热泵系统的设计和优化。

Wang等。(2019)使用数值方法研究了解释井眼测井数据的影响参数和不确定性。为此,他们模拟了高焓井的不同井操作条件,并在新开发的井眼模拟器中创建了合成温度测井曲线。作者提供了影响井温度分布的关键因素的见解,这些见解可用于指导选择用于估算静态地层温度的钻井数据以及在未来的研究中设计逆向建模方案。

Vallier等。(2020年)提出了一系列新的2D和3D热液力机械(THM)模型,这些模型表明,上莱茵格拉本上游地热站点附近的区域重力异常的贡献(通常归因于地质特征)可能是由于深水库规模的热液循环。他们的模型预测表明,该地区的合成重力变化具有约7.5 km的波长,这与该地区水热对流单元的宽度一致。这些异常的预测幅度很小(约20 µGal),可以通过绝对重量法解决,因此可以在现场进行测量。

Ystroem等人提出了一种用于统计储层温度的新型统计多分量地热仪。(2020)。与现有方法相比,此新工具所需的地球化学数据集大大减少,并且已针对高焓Krafla和Reykjanes地热系统中的储层温度测量进行了验证。这款新型地热仪快速且易于使用,无需复杂的气体分析即可提供可靠的结果。

最后,Frick等人提出了在印度尼西亚的地热站点成功实施二元植物的计划。(2019)。作者提供了有关此全自动二元工厂集成的技术细节和设计注意事项,并表明此新型系统的最大功率为400 kW,将来有可能达到500 kW。

我们邀请您更详细地探讨这些丰富的贡献。

  1. 1。

    包括斯特拉斯堡欧洲大都市的Horizo​​n 2030能源计划,慕尼黑的《区域供暖愿景2040》,ETIP-DG的《深部地热实施路线图》以及即将发布的SET《深部地热实施计划》。

  2. 2。

    增强的地热系统。

  3. 3。

    https://www.eera-geothermal.eu。

  4. 4。

    在EGW 2018之后在2019中添加。

  1. Chen C,Shao H,Naumov D,Kong Y,Tu K,KolditzO。关于建筑物采暖深孔换热器系统的性能,可持续性和效率的数值研究。地热能。2019; 7:18。

    文章Google学术搜索

  2. Duwiquet H,Arbaret L,Guillou-Frottier L,Heap MJ,BellangerM。关于地壳断层带的地热潜能:以蓬蒂鲍德地区(法国法国中央山脉)为例。地热能。2019; 7:33。

    文章Google学术搜索

  3. Frick S,Kranz S,Kupfermann G,Saadat A,HuengesE。在印度尼西亚利用地热盐水:二元示范发电厂Lahendong / Pangolombian。地热能。2019; 7:30。

    文章Google学术搜索

  4. Gascuel V,BédardK,Comeau FA,Raymond J,Malo M.使用稀疏数据的偏远沉积盆地的地热资源评估:从加拿大Anticosti岛汲取的经验教训。地热能。2020; 8:3。

    文章Google学术搜索

  5. HarléP,Kushnir ARL,Aichholzer C,Heap MJ,Hehn R,Maurer V,Baud P,Richard A,Genter A,DindererP。使用沉积岩热导率的实验室测量方法,估算了上莱茵河格拉本的热流密度。地热能。2019; 7:38。

    文章Google学术搜索

  6. MJ堆,Kushnir ARL,HA,Gilg HA,Violay MES,Harl P和Baud P.来自Soultz-sous-Forêts地热站点(法国)的Muschelkalk的岩石物理性质,这是上莱茵河Graben地热开发的重要岩性地层学单元。地热能。2019; 7:27。

    文章Google学术搜索

  7. Lepillier B,Daniilidis A,Doonechaly Gholizadeh N,Bruna PO,Kummerow J,BruhnD。裂缝流动渗透率和应力依赖性模拟应用于多储层,多生产情景分析。地热能。2019; 7:24。

    文章Google学术搜索

  8. Lima MG,Vogler D,Querci L,Madonna C,Hattendorf B,Saar MO,Kong XZ。天然裂缝花岗岩中的热驱动裂缝孔径变化。地热能。2019; 7:23。

    文章Google学术搜索

  9. Vallier B,Magnenet V,Schmittbuhl J,Fond C.与Soultz-sous-Forêts(法国)深部热液循环有关的重力异常的THM建模。地热能。2020; 8:13。https://doi.org/10.1186/s40517-020-00167-8。

    文章Google学术搜索

  10. Wang J,Nitschke F,Gholami Korzani M,Kohl T.高焓井眼中的温度测井模拟。地热能。2019; 7:32。

    文章Google学术搜索

  11. Ystroem LH,Nitschke F,H,S,KohlT。用于高温玄武岩环境的多组分地热仪。地热能。2020; 8:2。

    文章Google学术搜索

下载参考

第六届欧洲地热研讨会的财政支持由LabEx G-eau-thermie Profonde提供,该实验室由欧洲能源研究联盟的地热联合计划(EERA地热)和拉斯特尔科学与观测大学(EOST-斯特拉斯堡大学/ CNRS)主办),以及佛朗哥-阿勒曼德大学(UFA)。研讨会的科学委员会由LabEx,ERA和卡尔斯鲁厄技术学院地热主席的代表组成。

隶属关系

  1. 斯特拉斯堡大学,CNRS,IPGS,UMR 7516,67000,法国斯特拉斯堡
    • 亚历山德拉·RL·库什尼尔
  2. 巴伐利亚地热联盟,慕尼黑工业大学慕尼黑工程学院,德国慕尼黑
    • 马库斯·洛威尔(Markus Loewer)
s
  1. Alexandra RL Kushnir查看作者出版物您也可以在以下位置搜索该作者
    • 考研
    • 谷歌学术
  2. Markus Loewer查看作者出版物您也可以在以下位置搜索该作者
    • 考研
    • 谷歌学术

会费

ARLK和ML撰写了手稿。两位作者均阅读并批准了最终稿。

通讯作者

对应于Alexandra RL Kushnir。

利益争夺

作者宣称他们没有竞争利益。

发行人须知

对于已发布地图和机构隶属关系中的管辖权主张,Springer Nature保持中立。

开放存取本文是根据知识共享署名4.0国际许可许可的,该许可允许以任何媒介或格式使用,共享,改编,分发和复制,只要您对原始作者和出处提供适当的信誉,链接到知识共享许可,并指出是否进行了更改。本文的图像或其他第三方材料包含在该文章的知识共享许可中,除非在该材料的信用栏中另有说明。如果该材料未包含在该文章的创用CC许可中,并且您的预期用途未得到法律法规的许可或超出了许可的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。

转载和许可

通过CrossMark验证货币和真实性

引用本文

Kushnir,ARL,Loewer,M。从勘探到运营:深层地热能的研究进展。地热能源 8, 15(2020)。https://doi.org/10.1186/s40517-020-00169-6

下载引文

  • 发表时间

  • DOI https //doi.org/10.1186/s40517-020-00169-6

更新日期:2020-05-19
down
wechat
bug