当前位置: X-MOL 学术Optica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
All-precision-machining fabrication of ultrahigh-Q crystalline optical microresonators
Optica ( IF 8.4 ) Pub Date : 2020-06-11 , DOI: 10.1364/optica.394244
Shun Fujii , Yuka Hayama , Kosuke Imamura , Hajime Kumazaki , Yasuhiro Kakinuma , Takasumi Tanabe

The development of ultrahigh-quality-factor ($\textit{Q}$) microresonators has been driving such technologies as cavity quantum electrodynamics (QED), high-precision sensing, optomechanics, and optical frequency comb generation. Here we report ultrahigh $Q$ crystalline microresonator fabrication with a $\textit{Q}$ exceeding ${10^8}$, for the first time to our knowledge, achieved solely by computer-controlled ultraprecision machining. Our machining fabrication method readily achieves the dispersion engineering and size control of manufactured devices via programmed machine motion, both of which were not possible with the conventional manual polishing method. We can achieve an ultrahigh ${{Q}}$ without the need for subsequent careful polishing that is generally required to ensure that surface integrity is maintained. We carefully addressed the cutting condition and crystal anisotropy to overcome the large surface roughness that has thus far been the primary cause of the low $Q$ in the machining process. Our result paves the way for a reliable fabrication with a view to various photonic applications utilizing ultrahigh-$\textit{Q}$ crystalline microresonators.

中文翻译:

超高Q晶体光学微谐振器的全加工

超高品质因数($ \ textit {Q} $)微谐振器的发展已推动了诸如腔量子电动力学(QED),高精度传感,光力学和光频率梳产生等技术的发展。在此,我们首次报道了超高的$ Q $晶体微谐振器制造,其中$ \ textit {Q} $超过$ {10 ^ 8} $,这是我们所知的第一次,这完全是通过计算机控制的超精密加工实现的。我们的机加工制造方法可通过编程的机器运动轻松实现分散工程和制造设备的尺寸控制,而传统的手动抛光方法则无法实现这两者。我们可以达到$ {{Q}} $的超高水平无需随后进行通常需要确保确保表面完整性的仔细抛光。我们仔细地解决了切削条件和晶体各向异性,以克服大的表面粗糙度,这迄今为止是加工过程中低Q $的主要原因。我们的结果为利用超高\ textit {Q} $晶体微谐振器的各种光子应用铺平了道路,从而为可靠的制造铺平了道路。
更新日期:2020-06-22
down
wechat
bug