当前位置: X-MOL 学术Eur. J. Inorg. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
COMMUNICATION   Structure and magnetic properties of an original {CuIIMnIIWV} heterotrimetallic coordination polymer
European Journal of Inorganic Chemistry ( IF 2.2 ) Pub Date : 2020-07-09 , DOI: 10.1002/ejic.202000469
Maria-Gabriela Alexandru 1 , Diana Visinescu 2 , Augustin M. Madalan 3 , Rodolphe Clérac 4 , Marius Andruh 3
Affiliation  

A monodimensional heterotrimetallic coordination polymer of formula ∞ 1 [{Cu II Mn II L 2 } 3 {(µ-NC) 3 W V (CN) 5 } 2 ]·H 2 O (1) has been assembled from pre-designed [Cu II Mn II L 2 ] 2+ cationic modules and homoleptic [W V (CN) 8 ] 3-metalloligands (H 2 L 2 is the compartmental Schiff-base resulting from the stepwise condensation of 2,6-diformyl-p-cresol with ethylenediamine and di-Polynuclear complexes containing different paramagnetic metal ions are of high interest in molecule-based magnetism. [1] The large majority of the heterometallic molecular systems are constructed from two different metal ions. Conversely, complexes with three different paramagnetic centers are significantly less common, mainly because of the difficulties related to the scrambling of the metal ions. [2] A rational synthetic approach towards heterotrimetallic complexes consists of assembling preformed heterobimetallic modules and metalloli-gands. [2] Anionic cyanido complexes, homo-and heteroleptic, are excellent metalloligands for building magnetic molecule-based materials containing two, or more, different metal ions. [3] Our work in this field of research has been focused on the use of heterobimetallic tectons like phenoxido-bridged 3d-3d′ and 3d-4f complexes, with the metal ions enclosed into different coordination sites generated by dissymmetric macrocyclic or [a] Dr. 3111 ethylenetriamine). The magnetic properties of 1 have been investigated revealing a three-dimensional ordered antiferromag-netic ground state below 4 K resulting from different antiferro-magnetic interactions between all the spin carriers (S = 1/2 Cu II , S = 5/2 Mn II , and S = 1/2 W V centers). side-off compartmental ligands. [4] Indeed, most of the known heterotrimetallic complexes are assembled using 3d-4f precursors , which are easily obtained by exploiting the differences between 3d and 4f metal ions [coordination numbers, HSAB-"hard and soft (Lewis) acids and bases"-behavior] and using side-off compartmental ligands. [5] The synthesis of 3d-3d′ magnetic building-blocks is more delicate, since the differences mentioned above are less prominent. One appropriate pair is composed of Cu II and Mn II ions, especially because Mn II does not have a particular stereochemical preference, while Cu II does. Robust binuclear Cu II-Mn II complexes have been generated using side-off compartmental ligands (like H 2 L 1 see Scheme 1) with an open compartment that allows various coordination numbers and geometries for the Mn II ion, while the inner compartment hosts a Cu II metal ion with a square-planar or square-pyramidal geometry (Scheme 1). [6] Scheme 1. For analogous bis-phenoxido-bridged Cu II-Mn II binuclear complex, [Cu II Mn II L 2 ] 2+ (Scheme 1), the metal ions are held together by a dissymmetric compartmental Robson-type ligand. [7] Both binuclear systems are characterized by an S = 2 ground state, which results from a significant antiferromagnetic interaction between S = 1/2 Cu II and S = 5/2 Mn II centers, and are thus good building-block candidates for designing heterotrimetallic magnetic complexes and networks. For example, the self-as

中文翻译:

通信原始{CuIIMnIIWV}异三金属配位聚合物的结构和磁性能

[2] 异三金属配合物的合理合成方法包括组装预制异双金属模块和金属配体。[2] 阴离子氰化物配合物,均配和杂配,是用于构建含有两种或多种不同金属离子的磁性分子基材料的优良金属配体。[3] 我们在这一研究领域的工作重点是使用异双金属构造,如酚氧桥连 3d-3d' 和 3d-4f 配合物,金属离子封闭在由不对称大环或 [a] 产生的不同配位位点中3111 乙三胺博士)。已经研究了 1 的磁性,揭示了低于 4 K 的三维有序反铁磁基态,这是由所有自旋载流子(S = 1/2 Cu II ,S = 5/2 Mn II )之间的不同反铁磁相互作用引起的, 并且 S = 1/2 WV 中心)。侧隔室配体。[4] 事实上,大多数已知的异三金属配合物都是使用 3d-4f 前体组装而成的,这很容易通过利用 3d 和 4f 金属离子之间的差异而获得 [配位数,HSAB-“硬和软(刘易斯)酸和碱” -behavior] 和使用侧向隔室配体。[5] 3d-3d'磁性积木的合成更加精细,因为上述差异不那么突出。一对合适的离子由 Cu II 和 Mn II 离子组成,特别是因为 Mn II 没有特定的立体化学偏好,而 Cu II 有。使用侧向隔室配体(如 H 2 L 1 参见方案 1)生成了坚固的双核 Cu II-Mn II 配合物,该配体具有开放隔室,允许 Mn II 离子具有各种配位数和几何形状,而内部隔室承载具有方形平面或方形锥体几何形状的 Cu II 金属离子(方案 1)。[6] 方案 1. 对于类似的双酚氧桥连 Cu II-Mn II 双核配合物,[Cu II Mn II L 2 ] 2+(方案 1),金属离子通过不对称的隔室 Robson 型配体结合在一起. [7] 两个双核系统的特点是 S = 2 基态,这是由 S = 1/2 Cu II 和 S = 5/2 Mn II 中心之间显着的反铁磁相互作用产生的,因此是很好的构建块候选者设计异质三金属磁性配合物和网络。例如,自我作为 对于类似的双酚基桥连 Cu II-Mn II 双核络合物,[Cu II Mn II L 2 ] 2+ (方案 1),金属离子通过不对称的隔室 Robson 型配体结合在一起。[7] 两个双核系统的特点是 S = 2 基态,这是由 S = 1/2 Cu II 和 S = 5/2 Mn II 中心之间显着的反铁磁相互作用产生的,因此是很好的构建块候选者设计异质三金属磁性配合物和网络。例如,自我作为 对于类似的双酚基桥连 Cu II-Mn II 双核络合物,[Cu II Mn II L 2 ] 2+ (方案 1),金属离子通过不对称的隔室 Robson 型配体结合在一起。[7] 两个双核系统的特点是 S = 2 基态,这是由 S = 1/2 Cu II 和 S = 5/2 Mn II 中心之间显着的反铁磁相互作用产生的,因此是很好的构建块候选者设计异质三金属磁性配合物和网络。例如,自我作为 因此是设计异质三金属磁性配合物和网络的良好基石候选物。例如,自我作为 因此是设计异质三金属磁性配合物和网络的良好基石候选物。例如,自我作为
更新日期:2020-07-09
down
wechat
bug