当前位置: X-MOL 学术Engineering › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of an Unusual Two-Dimensional Layered Structure for Fused-Ring Energetic Materials with High Energy and Good Stability
Engineering ( IF 12.8 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.eng.2020.01.013
Yongan Feng , Mucong Deng , Siwei Song , Sitong Chen , Qinghua Zhang , Jean'ne M. Shreeve

Abstract The creation of high-performance energetic materials with good mechanical sensitivities has been a great challenge over the past decades, since such materials have huge amounts of energy and are thus essentially unstable. Here, we report on a promising fused-ring energetic material with an unusual two-dimensional (2D) structure, 4-nitro-7-azido-pyrazol-[3,4-d]-1,2,3-triazine-2-oxide (NAPTO), whose unique 2D structure has been confirmed by single-crystal X-ray diffraction. Experimental studies show that this novel energetic compound has remarkably high energy (detonation velocity D = 9.12 km·s−1; detonation pressure P = 35.1 GPa), excellent sensitivities toward external stimuli (impact sensitivity IS = 18 J; friction sensitivity FS = 325 N; electrostatic discharge sensitivity EDS = 0.32 J) and a high thermal decomposition temperature (203.2 °C), thus possessing the dual advantages of high energy and low mechanical sensitivities. To our knowledge, NAPTO is the first fused-ring energetic material with 2D layered crystal stacking. The stabilization mechanism toward external stimuli were investigated using molecular simulations, and the theoretical calculation results demonstrate that the ultraflat 2D layered structure can buffer external mechanical stimuli more effectively than other structures by converting the mechanical energy acting on the material into layer sliding and compression. Our study reveals the great promise of the fused-ring 2D layered structure for creating advanced energetic materials.

中文翻译:

一种具有高能量和良好稳定性的熔融环高能材料的不寻常二维层状结构的构建

摘要 在过去的几十年里,创造具有良好机械敏感性的高性能含能材料一直是一个巨大的挑战,因为这种材料具有巨大的能量,因此本质上是不稳定的。在这里,我们报告了一种具有不寻常二维 (2D) 结构的有前途的稠环高能材料 4-nitro-7-azido-pyrazol-[3,4-d]-1,2,3-triazine-2 -氧化物 (NAPTO),其独特的 2D 结构已通过单晶 X 射线衍射证实。实验研究表明,这种新型含能化合物具有非常高的能量(爆速 D = 9.12 km·s−1;爆压 P = 35.1 GPa),对外部刺激具有极好的敏感性(冲击敏感性 IS = 18 J;摩擦敏感性 FS = 325 N;静电放电灵敏度 EDS = 0.32 J) 和高热分解温度 (203. 2 °C),从而具有高能量和低机械灵敏度的双重优势。据我们所知,NAPTO 是第一种具有 2D 层状晶体堆叠的稠环高能材料。利用分子模拟研究了对外部刺激的稳定机制,理论计算结果表明,超平坦二维层状结构通过将作用于材料的机械能转化为层滑动和压缩,可以比其他结构更有效地缓冲外部机械刺激。我们的研究揭示了稠环二维分层结构在创造先进高能材料方面的巨大前景。NAPTO 是第一种具有 2D 层状晶体堆叠的稠环高能材料。利用分子模拟研究了对外部刺激的稳定机制,理论计算结果表明,超平坦二维层状结构通过将作用于材料的机械能转化为层滑动和压缩,可以比其他结构更有效地缓冲外部机械刺激。我们的研究揭示了稠环二维分层结构在创造先进高能材料方面的巨大前景。NAPTO 是第一种具有 2D 层状晶体堆叠的稠环高能材料。利用分子模拟研究了对外部刺激的稳定机制,理论计算结果表明,超平坦二维层状结构通过将作用在材料上的机械能转化为层滑动和压缩,可以比其他结构更有效地缓冲外部机械刺激。我们的研究揭示了稠环二维分层结构在创造先进高能材料方面的巨大前景。理论计算结果表明,超扁平二维层状结构通过将作用在材料上的机械能转化为层滑动和压缩,比其他结构能更有效地缓冲外部机械刺激。我们的研究揭示了稠环二维分层结构在创造先进高能材料方面的巨大前景。理论计算结果表明,超扁平二维层状结构通过将作用在材料上的机械能转化为层滑动和压缩,比其他结构能更有效地缓冲外部机械刺激。我们的研究揭示了稠环二维分层结构在创造先进高能材料方面的巨大前景。
更新日期:2020-09-01
down
wechat
bug