当前位置: X-MOL 学术Annu. Rev. Chem. Biomol. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiscale Lithium-Battery Modeling from Materials to Cells.
Annual Review of Chemical and Biomolecular Engineering ( IF 7.6 ) Pub Date : 2020-06-08 , DOI: 10.1146/annurev-chembioeng-012120-083016
Guanchen Li 1, 2 , Charles W Monroe 1, 2
Affiliation  

New experimental technology and theoretical approaches have advanced battery research across length scales ranging from the molecular to the macroscopic. Direct observations of nanoscale phenomena and atomistic simulations have enhanced the understanding of the fundamental electrochemical processes that occur in battery materials. This vast and ever-growing pool of microscopic data brings with it the challenge of isolating crucial performance-decisive physical parameters, an effort that often requires the consideration of intricate interactions across very different length scales and timescales. Effective physics-based battery modeling emphasizes the cross-scale perspective, with the aim of showing how nanoscale physicochemical phenomena affect device performance. This review surveys the methods researchers have used to bridge the gap between the nanoscale and the macroscale. We highlight the modeling of properties or phenomena that have direct and considerable impact on battery performance metrics, such as open-circuit voltage and charge/discharge overpotentials. Particular emphasis is given to thermodynamically rigorous multiphysics models that incorporate coupling between materials’ mechanical and electrochemical states.

中文翻译:


从材料到电池的多尺度锂电池建模。

新的实验技术和理论方法已经在从分子到宏观的各种长度尺度上进行了先进的电池研究。对纳米级现象的直接观察和原子模拟已增强了对电池材料中发生的基本电化学过程的理解。庞大且不断增长的微观数据库带来了隔离关键性能决定性物理参数的挑战,这一工作通常需要考虑非常不同的长度范围和时间范围之间的复杂交互。有效的基于物理的电池建模强调了跨尺度的观点,目的是展示纳米级的物理化学现象如何影响设备性能。这篇综述调查了研究人员用来弥合纳米尺度和宏观尺度之间差距的方法。我们重点介绍对电池性能指标有直接而重大影响的特性或现象的建模,例如开路电压和充电/放电过电位。特别强调了热力学严格的多物理场模型,该模型包含了材料的机械状态和电化学状态之间的耦合。

更新日期:2020-06-08
down
wechat
bug