当前位置: X-MOL 学术IEEE Magn. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Two-dimensional flow field visualization of temperature-sensitive magnetic fluid using luminescent micro capsule
IEEE Magnetics Letters ( IF 1.2 ) Pub Date : 2020-01-01 , DOI: 10.1109/lmag.2020.2994559
Keiko Ishii , Ryota Aizawa , Koji Fumoto

There has been no study for measuring the comprehensive flow field of magnetic fluids. A pumpless transport system has been envisaged based on the temperature dependence of the magnetization of magnetic fluid; however, the knowledge regarding the internal flow is still limited. It is difficult to optimize the design and realize the practical use of the transport system using magnetic fluid. Therefore, in this study, for the first time, a two-dimensional flow field was visualized by encapsulating a magnetic material in a microcapsule and labeling it with fluorescence. The flow field was measured with high accuracy using a fluorescent capsule, and the effectiveness of this method was demonstrated. When a magnetic field was applied, the location of the velocity peak shifted toward the magnetic field. Chain clusters were generated and gathered on a wall. The clusters maintained their shape and slid on the wall owing to the fluid shear force. At high temperatures, the capsules did not form clusters, and there was no change in peak velocity. In a previous study, it was shown that the heat transfer efficiency of magnetic fluids increases when a magnetic field is applied. In this study, it was suggested for the first time that the clusters generated on the wall promoted heat transfer on the wall, and the wall velocity could induce a change in the temperature boundary condition. The results of this study can help elucidate the flow characteristics of magnetic fluids and optimize the device design of the transport system using magnetic fluid.

中文翻译:

使用发光微胶囊的温敏磁流体二维流场可视化

目前还没有测量磁性流体综合流场的研究。基于磁性流体磁化强度的温度依赖性,已经设想了一种无泵传输系统;然而,关于内部流动的知识仍然有限。使用磁流体的输送系统难以优化设计并实现实际使用。因此,在本研究中,首次通过将磁性材料封装在微胶囊中并用荧光标记来可视化二维流场。使用荧光胶囊以高精度测量流场,并证明了该方法的有效性。当施加磁场时,速度峰值的位置向磁场移动。链簇被生成并聚集在墙上。由于流体剪切力,簇保持其形状并在壁上滑动。在高温下,胶囊没有形成团簇,峰值速度没有变化。先前的研究表明,当施加磁场时,磁性流体的传热效率会增加。在这项研究中,首次提出壁上产生的团簇促进了壁上的传热,壁速度可以引起温度边界条件的变化。本研究结果有助于阐明磁性流体的流动特性,优化使用磁性流体的输送系统的装置设计。在高温下,胶囊没有形成团簇,峰值速度没有变化。先前的研究表明,当施加磁场时,磁性流体的传热效率会增加。在这项研究中,首次提出壁上产生的团簇促进了壁上的传热,壁速度可以引起温度边界条件的变化。本研究结果有助于阐明磁性流体的流动特性,优化使用磁性流体的输送系统的装置设计。在高温下,胶囊没有形成团簇,峰值速度没有变化。先前的研究表明,当施加磁场时,磁性流体的传热效率会增加。在这项研究中,首次提出壁上产生的团簇促进了壁上的传热,壁速度可以引起温度边界条件的变化。本研究结果有助于阐明磁性流体的流动特性,优化使用磁性流体的输送系统的装置设计。首次提出壁面产生的团簇促进壁面传热,壁面速度可以引起温度边界条件的变化。本研究结果有助于阐明磁性流体的流动特性,优化使用磁性流体的输送系统的装置设计。首次提出壁面产生的团簇促进壁面传热,壁面速度可以引起温度边界条件的变化。本研究结果有助于阐明磁性流体的流动特性,优化使用磁性流体的输送系统的装置设计。
更新日期:2020-01-01
down
wechat
bug