当前位置: X-MOL 学术J. Chem. Theory Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations.
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2020-06-08 , DOI: 10.1021/acs.jctc.9b01217
Franco P Bonafé 1, 2, 3 , Bálint Aradi 4 , Ben Hourahine 5 , Carlos R Medrano 2, 3 , Federico J Hernández 2, 3, 6 , Thomas Frauenheim 4, 7 , Cristián G Sánchez 8
Affiliation  

The increasing need to simulate the dynamics of photoexcited molecular systems and nanosystems in the subpicosecond regime demands new efficient tools able to describe the quantum nature of matter at a low computational cost. By combining the power of the approximate DFTB method with the semiclassical Ehrenfest method for nuclear–electron dynamics, we have achieved a real-time time-dependent DFTB (TD-DFTB) implementation that fits such requirements. In addition to enabling the study of nuclear motion effects in photoinduced charge transfer processes, our code adds novel features to the realm of static and time-resolved computational spectroscopies. In particular, the optical properties of periodic materials such as graphene nanoribbons or the use of corrections such as the “LDA+U” and “pseudo SIC” methods to improve the optical properties in some systems can now be handled at the TD-DFTB level. Moreover, the simulation of fully atomistic time-resolved transient absorption spectra and impulsive vibrational spectra can now be achieved within reasonable computing time, owing to the good performance of the implementation and a parallel simulation protocol. Its application to the study of UV/visible light-induced vibrational coherences in molecules is demonstrated and opens a new door into the mechanisms of nonequilibrium ultrafast phenomena in countless materials with relevant applications.

中文翻译:

半经典激发态电子-核动力学和泵浦-探针光谱模拟的实时时变密度功能紧绑定实现。

在亚皮秒范围内模拟光激发分子系统和纳米系统动力学的需求不断增长,因此需要能够以低计算成本描述物质量子性质的新型高效工具。通过将近似DFTB方法的能力与半经典的Ehrenfest方法结合用于核电子动力学,我们实现了符合此类要求的实时时间相关DFTB(TD-DFTB)实现。除了能够研究光诱导电荷转移过程中的核运动效应之外,我们的代码还为静态和时间分辨计算光谱学领域增加了新功能。尤其是,现在可以在TD-DFTB级别上处理周期性材料(例如石墨烯纳米带)的光学特性,或使用诸如“ LDA + U”和“伪SIC”方法的修正方法来改善某些系统的光学特性。此外,由于实现的良好性能和并行的仿真协议,现在可以在合理的计算时间内完成完全原子时间分辨的瞬态吸收光谱和脉冲振动光谱的仿真。证明了其在研究UV /可见光诱导的分子中的振动相干性方面的应用,并为相关应用中的无数材料中的非平衡超快现象机理打开了新的大门。由于实现的良好性能和并行仿真协议,现在可以在合理的计算时间内完成完全原子时间分辨的瞬态吸收光谱和脉冲振动光谱的仿真。证明了其在研究UV /可见光诱导的分子中的振动相干性方面的应用,并为相关应用中的无数材料中的非平衡超快现象机理打开了新的大门。由于实现的良好性能和并行仿真协议,现在可以在合理的计算时间内完成完全原子时间分辨的瞬态吸收光谱和脉冲振动光谱的仿真。证明了其在研究UV /可见光诱导的分子中的振动相干性方面的应用,并为相关应用中的无数材料中的非平衡超快现象机理打开了新的大门。
更新日期:2020-07-14
down
wechat
bug