当前位置: X-MOL 学术Small Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emerging Materials Methods for Renewable Energy
Small Methods ( IF 12.4 ) Pub Date : 2020-06-09 , DOI: 10.1002/smtd.202000087
Qiang Zhang 1 , Shaojun Guo 2
Affiliation  

In 2018, 14 gigatons of oil equivalent (5.8 × 1020 J) energy was consumed worldwide. This energy consumption is always accelerated year by year to maintain the continuous growth of highly energy‐intensive global economies. This growth is 2.3% and is driven by high growth in electricity and gas demand. Renewable energy can play a key role in solving this present daily consumption of fossil fuels, global energy security, and environmental pollution. Currently, energy consumption is mainly realized by energy conversion and storage processes, in which energy is physically/chemically released/stored in materials (electrode, fuels, etc.). Therefore, the novel fundamental understanding and practical techniques of renewable energy conversion, production, transport, storage, and consumption, based on emerging materials methods, are highly desirable and thus extensively studied recently. Significant achievements have been made in emerging materials methods for achieving high‐performance solar cells, batteries, fuel cells, and supercapacitors, etc., which gives impetus to the rapid development of renewable energy technologies.

This special issue of Small Methods , “Emerging Materials Methods for Renewable Energy”, embodies international contributions and highlights very recent progress covering the main topics of solar cells, electrocatalysis, batteries, and supercapacitors.

Solar cells have been applied worldwide. In article 1900150, Kaimo Deng and Liang Li highlight recent progress on optical designs in organic–inorganic hybrid perovskite solar cells toward better device performance and wider applications. Currently, the average power conversion efficiency of perovskite solar cells has reached over 25%, and a continuous rise in this efficiency as well as a larger use of solar energy is highly expected.

The electricity generated from renewable resources is in high demand to produce fuels via water splitting and CO2/N2 reduction catalysis, and then locally convert this chemical energy into electrical energy through fuel cells and metal–air batteries upon request. The energy electrocatalysis, including oxygen reduction/evolution reactions, hydrogen reduction/evolution reactions, CO2 reduction reactions, and N2 reduction reactions, have been given considerable attetion. The hydrogen fuel cell devices require very large amount of Pt‐group‐metal catalysts to boost the oxygen reduction reactions. Recently, emerging materials methods to achieve low‐cost Pt‐group‐metal‐free electrocatalysts from earth‐abundant and easily sourced materials with very high reactivity of oxygen reduction are proposed. Herein, Shuhui Sun and co‐workers presented the emerging materials strategies for catalysts toward fuel cell technology (article 2000016); Yuehe Lin and co‐workers show a novel metal‐organic‐framework derived 2D single‐atom electrocatalyst for oxygen reduction reaction in article 1900827; Shaojun Guo and co‐workers report a class of Ir‐based alloys with a 3D flower‐like nanostructure both for hydrogen and oxygen generation in acid (article 1900129); Yang Yang and co‐workers demonstrate that novel Fe2P2S6 nanocrystals on carbon paper exhibit Pt‐like catalytic activity and better stability for high‐efficiency water electrolysis in an actual water electrolyzer (article 1900632); Zhifeng Ren and co‐workers describe the anchoring of Ru nanoparticles on (Fe, Ni)(OH)2 to boost hydrogen evolution reactivity in article 1900796; the application of free standing, self‐supported electrocatalysts for CO2 reduction is reviewed by Chuanxin He and co‐workers in article 1900826; and finally, atomically dispersed single site electrocatalysts is also another material method for nitrogen reduction to ammonia, which is well summarized by Gang Wu and co‐workers in article 1900821.

Energy storage technologies, such as lithium‐ion batteries, have created a wireless and mobile world in this century. With continuous demands for safe, high‐energy‐density and reliable energy storage systems, various emerging material methods have been proposed based on novel electrode materials and emerging electrochemistry. For instance, oxygen defects are confirmed in propelling the redox reaction of metal oxides for supercapacitors by Xihong Lu in article 1900823, and oxygen defects have been introduced into phosphate ion‐intercalated oxide compounds, rendering zinc ion storage in high capacity (article 1900868). The integration of electrodes into tminiaturized supercapacitors is another materials method to boost energy storage behavior, which is described by Young Jin Kim in article 1900824. To fully probe the role of working electrodes in a cell, recent progress on in‐situ X‐ray and neutron techniques are reviewed by Qi Liu and co‐workers to afford the dynamic observations of working materials in article 1900223. These afford emerging paradigms to probe the working energy materials for renewable energy storage.

Lithium–sulfur batteries are an emerging means to boost the reactivity of sulfur cathodes and lithium anodes through sulfur redox reactions. Herein, in article 1900467, Chenglin Yan and co‐workers summarize recent advances in lithium–sulfur batteries with the aid of in situ/in operando characterizations to probe the working and degradation mechanism of lithium‐sulfur batteries. The chemical confinement and full use of lithium polysulfide intermediates are reviewed by Yanglong Hou and co‐workers in article 1900001; Jim Yang Lee and co‐workers summarize the introduction of solid adsorbents, mediators, and catalysts for enhancing the electrochemical performance of composite sulfur cathodes in working lithium‐sulfur batteries in article 1900864, while Jia‐Qi Huang and co‐workers creatively introduce homogeneous cobaltocene as a persistent extrinsic redox mediator to render an unprecedented growing pathway toward 3D lithium sulfide growth in article 1900344. Li‐O2 batteries have the highest specific capacity but suffer severely from cycle instability. Dongliang Chao, Hongjin Fan, and co‐workers propose an integrated cathode containing an amorphous MoS2 layer for boosting the energy efficiency and cycle life up to 190 cycles (article 19002784). In both lithium–sulfur and lithium–oxygen batteries, uncontrollable dendrite growth severely impedes the practical applications and induces safety issues. The synergy between lithiophilic sites and conductive scaffolds is investigated by Qiang Zhang and co‐workers to achieve an effective lithium host for dendrite‐free lithium anodes in article 1900177. These enable the high utilization of active materials in harsh conditions of high‐rate or electrolyte‐lean operations in a working battery.

The energy storage devices in next‐generation power plants are strongly considered for large‐scale energy storage systems. Rechargeable sodium‐ion batteries are emerging means for low‐cost and robust energy storage. In article 1900163, Xiaodong Guo, Shulei Chou, and co‐workers introduce synthesis strategies and morphology control of porous carbonaceous materials for sodium‐ion batteries. The marriage of carbon with sodiated metal oxides, phosphates, and organic compounds can meet the request from various load leveling of renewable energy sources during renewable energy harvesting.

This special issue in Small Methods affords an international platform to share the impressive research progress on emerging materials methods for renewable energy from international research groups. The share of renewable energy sources has been growing by nearly 26% since the end of the 2000s. The emerging material method concepts herein are expected to arouse a family of energy technology that accelerates the growth of renewable energy. Here we sincerely appreciate the editorial team of Small Methods , especially Dr. Guangchen Xu and Dr. Muxian Shen, for providing the opportunity to publish this special issue, and we would like to express our deepest gratitude to all authors, reviewers, editors, and readers for their excellent contributions to this special issue.



中文翻译:

新兴材料可再生能源方法

在2018年,有14吉吨石油当量(5.8×10 20J)能源在世界范围内消耗。能源消耗总是逐年加速,以保持高度能源密集型的全球经济的持续增长。该增长为2.3%,这是由电力和天然气需求的高增长推动的。可再生能源可以在解决目前每天使用的化石燃料,全球能源安全和环境污染方面发挥关键作用。当前,能量消耗主要通过能量转换和存储过程来实现,其中能量以物理/化学方式释放/存储在材料(电极,燃料等)中。因此,非常需要基于新兴材料方法的对可再生能源的转换,生产,运输,存储和消耗的新颖的基本理解和实用技术,因此最近进行了广泛的研究。

本期《小方法》的特刊“可再生能源的新兴材料方法”体现了国际贡献,并着重强调了涵盖太阳能电池,电催化,电池和超级电容器等主要主题的最新进展。

太阳能电池已在世界范围内应用。邓凯茂和梁力在1900150号文章中重点介绍了有机-无机混合钙钛矿太阳能电池在光学设计方面的最新进展,以实现更好的器件性能和更广泛的应用。目前,钙钛矿太阳能电池的平均功率转换效率已达到25%以上,并且人们一直期望这种效率不断提高以及更多地使用太阳能。

对可再生资源产生的电力的需求很高,它们需要通过水分解和CO 2 / N 2还原催化来生产燃料,然后根据需要通过燃料电池和金属空气电池将该化学能局部转化为电能。能量电催化,包括氧还原/放出反应,氢还原/放出反应,CO 2还原反应和N 2还原反应已引起相当大的关注。氢燃料电池装置需要大量的铂族金属催化剂来促进氧还原反应。最近,人们提出了新兴的材料方法,该方法可从富含土和易获得的,具有很高的氧还原反应性的材料中获得低成本的无Pt族金属的电催化剂。在这里,孙淑慧和他的同事们介绍了新兴的催化剂战略,以促进燃料电池技术的发展(第2000016条);Lin Yuehe及其同事在文章1900827中展示了一种新颖的由金属-有机-框架衍生的二维单原子电催化剂,用于氧还原反应。Guo Shaojun Guo及其同事报告了一类具有3D花状纳米结构的Ir基合金,可同时在酸中产生氢和氧(第1900129条)。碳纸上的2 P 2 S 6纳米晶体表现出Pt样的催化活性,并且在实际的水电解槽中对高效水电解具有更好的稳定性(第1900632条);任志峰及其同事在文章1900796中描述了Ru纳米颗粒在(Fe,Ni)(OH)2上的锚固以提高氢释放反应性; 何传新及其同事在第1900826条中回顾了独立式自支撑电催化剂在CO 2还原中的应用。最后,原子分散的单中心电催化剂也是将氮还原为氨的另一种重要方法,该方法由Gang Wu和他的同事在1900821条中得到了很好的总结。

诸如锂离子电池之类的储能技术已经在本世纪创造了无线和移动世界。随着对安全,高能量密度和可靠的能量存储系统的不断需求,已经提出了基于新型电极材料和新兴电化学的各种新兴材料方法。例如,陆希宏在1900823号文章中证实了氧缺陷促进了超级电容器的金属氧化物的氧化还原反应,并且氧缺陷已被引入磷酸盐离子嵌入的氧化物化合物中,从而使锌离子具有高容量存储能力(1900868条)。Young Jin Kim在文章1900824中描述了将电极集成到微型化超级电容器中的另一种提高储能性能的方法。

锂硫电池是一种通过硫氧化还原反应提高硫阴极和锂阳极反应性的新兴手段。本文中,闫成林及其同事在第1900467条文章中,借助原位/工作特性表征,总结了锂硫电池的最新进展,以探究锂硫电池的工作和降解机理。侯仰龙及其同事在第1900001条中回顾了多硫化锂中间体的化学限制和充分利用;吉姆·杨·李(Jim Yang Lee)及其同事总结了固体吸附剂,介体和催化剂的引入,以增强工作中的锂硫电池中复合硫阴极的电化学性能,见1900864号文章,2个电池具有最高的比容量,但严重遭受循环不稳定的困扰。潮冬亮,范洪进及其同事提出了一种集成阴极,该阴极包含非晶态的MoS 2层,可将能源效率和循环寿命提高到190个循环(第19002784条)。在锂硫电池和锂氧电池中,无法控制的枝晶生长严重阻碍了实际应用并引发了安全问题。张强及其同事研究了疏脂性位点与导电支架之间的协同作用,以在第1900177条中实现无树突状锂阳极的有效锂主体。这使活性材料能够在高速率或电解质的苛刻条件下得到高利用率在可用电池中进行稀薄操作。

下一代发电厂中的储能设备被强烈考虑用于大型储能系统。可充电的钠离子电池是低成本,坚固耐用的能量存储的新兴手段。在1900163号文章中,郭小东,周树雷和他的同事们介绍了钠离子电池用多孔碳质材料的合成策略和形貌控制。碳与固态金属氧化物,磷酸盐和有机化合物的结合可以满足可再生能源收集期间各种可再生能源负荷水平的要求。

小方法》上的这一特刊提供了一个国际平台,以分享国际研究小组对可再生能源的新兴材料方法令人印象深刻的研究进展。自2000年代末以来,可再生能源的份额一直增长近26%。预期本文中出现的新材料方法概念将唤起加速可再生能源增长的一系列能源技术。在此,我们衷心感谢Small Method的编辑团队,特别是徐光辰博士和沉慕贤博士,为发表这一特刊提供了机会,并在此向所有作者,评论者,编辑和作者表示最深切的谢意。读者对本期特刊的杰出贡献。

更新日期:2020-06-09
down
wechat
bug