当前位置: X-MOL 学术Plant Cell Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Up-regulating GmETO1 improves phosphorus uptake and use efficiency by promoting root growth in soybean.
Plant, Cell & Environment ( IF 6.0 ) Pub Date : 2020-06-08 , DOI: 10.1111/pce.13816
Hengyou Zhang 1, 2 , Yuming Yang 1 , Chongyuan Sun 1 , Xiaoqian Liu 1 , Lingling Lv 1 , Zhenbin Hu 2 , Deyue Yu 3, 4 , Dan Zhang 1
Affiliation  

Soybean is a high inorganic phosphate (Pi) demanding crop; its production is strongly suppressed when Pi is deficient in soil. However, the regulatory mechanism of Pi deficiency tolerance in soybean is still largely unclear. Here, our findings highlighted the pivotal role of the ethylene‐associated pathway in soybean tolerance to Pi deficiency by comparatively studying transcriptome changes between a representative Pi‐deficiency‐tolerant soybean genotype NN94156 and a sensitive genotype Bogao under different Pi supplies. By further integrating high‐confident linkage and association mapping, we identified that Ethylene‐Overproduction Protein 1 (GmETO1), an essential ethylene‐biosynthesis regulator, underlies the major quantitative trait locus (QTL) q14‐2 controlling Pi uptake. GmETO1 was also the representative member of ETO1 family members that was strongly induced by Pi deficiency. Overexpressing GmETO1 significantly enhanced Pi deficiency tolerance by increasing proliferation and elongation of hairy roots, Pi uptake and use efficiency, and conversely, silencing of GmETO1 led to opposite findings. We further demonstrated that Pi‐deficiency inducible genes critical for root morphological and physiological traits including GmACP1/2, Pht1;4, Expansin‐A7 and Root Primordium Defective 1 functioned downstream of GmETO1. Our study provides comprehensive insight into the complex regulatory mechanism of Pi deficiency tolerance in soybean and a potential way to genetically improve soybean low‐Pi tolerance.

中文翻译:


上调 GmETO1 通过促进大豆根部生长来提高磷的吸收和利用效率。



大豆是一种对无机磷(Pi)需求量较高的作物;当土壤中缺乏Pi时,其生产会受到强烈抑制。然而,大豆耐缺磷的调控机制仍不清楚。在这里,我们的研究结果通过比较研究不同 Pi 供应下代表性的 Pi 缺乏耐受大豆基因型 NN94156 和敏感基因型 Bogao 之间的转录组变化,强调了乙烯相关途径在大豆对 Pi 缺乏耐受性中的关键作用。通过进一步整合高置信度的连锁和关联图谱,我们确定了乙烯过量生产蛋白 1 ( GmETO1 )(一种重要的乙烯生物合成调节因子)是控制 Pi 吸收的主要数量性状基因座 (QTL) q14-2的基础。 GmETO1也是Pi缺乏强烈诱导的ETO1家族成员的代表成员。过表达GmETO1通过增加毛状根的增殖和伸长、Pi吸收和利用效率显着增强Pi缺乏耐受性,相反, GmETO1沉默导致相反的结果。我们进一步证明,对根形态和生理性状至关重要的 Pi 缺乏诱导基因(包括GmACP1 / 2Pht1;4Expansin-A7根原基缺陷 1 )GmETO1下游发挥作用。我们的研究为大豆耐缺磷的复杂调控机制提供了全面的见解,并为从遗传上提高大豆低磷耐受性提供了一种潜在的方法。
更新日期:2020-06-08
down
wechat
bug