当前位置: X-MOL 学术J. Paleolimnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantification of chlorophyll a, chlorophyll b and pheopigments a in lake sediments through deconvolution of bulk UV–VIS absorption spectra
Journal of Paleolimnology ( IF 2.1 ) Pub Date : 2020-06-09 , DOI: 10.1007/s10933-020-00135-z
Andrea Sanchini , Martin Grosjean

Assessments of aquatic paleoproduction and pigment preservation require accurate identification and quantification of sedimentary chlorophylls. Using chromatographic techniques to analyze long records at high resolution is impractical because they are expensive and labor intensive. We have developed a new rapid and low-cost approach to infer the concentrations of chlorophyll a, chlorophyll b and related chlorophyll derivatives (pheopigments a) from the mathematical decomposition of UV–VIS measured bulk spectrophotometer absorption spectra of standard solutions and sediment extracts. We validated our method against high-performance liquid chromatography (HPLC) measurements on standard solutions and on varved, anoxic sediment from eutrophic Lake Lugano (Ponte Tresa sub-basin, southern Switzerland), where the history of productivity is relatively well known for the twentieth century. Our mathematical approach quantifies the concentration of chlorophyll b (RadJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{R}}_{{{\text{ad}}_{\text{J}}}}^{2} $$\end{document} = 0.99, RMSEP ~ 5.9%), chlorophyll a (RadJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{R}}_{{{\text{ad}}_{\text{J}}}}^{2} $$\end{document} = 0.98, RMSEP ~ 5.0%), and pyropheophorbide a (RadJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{R}}_{{{\text{ad}}_{\text{J}}}}^{2} $$\end{document} = 0.99, RMSEP ~ 7.8%) in standard solutions. We obtain comparable results for total chloropigment a (chlorophyll a + pheopigments a), chlorophyll a and diagenetic products (pheopigments a) in the sediment samples of our case study (Ponte Tresa). Here, HPLC concentrations of chlorophyll b are very low. The method has, however, the potential to achieve values for chlorophyll b concentrations in sediments with chlorophylls a/chlorophylls b ratios lower than 3.4. The pigment stratigraphy of the Ponte Tresa sediments correspond very well with the paleoproduction and eutrophication history of the twentieth century. The ratio between chlorophyll a and pheopigments a used as a qualitative indicator of sedimentary chlorophyll preservation (chlorophyll a/{chlorophyll a + pheopigments a}) is only weakly correlated with aquatic paleoproduction (radj = 0.35, p-value = 0.045) and remained remarkably constant in the recent century despite strong anthropogenic eutrophication. The new method is useful for obtaining, in a cost- and time-efficient way, information about major sedimentary pigment groups that are relevant to inferring paleoproduction, potentially green algae biomass, pigment preservation and early diagenetic effects.

中文翻译:

通过散装 UV-VIS 吸收光谱的解卷积量化湖泊沉积物中的叶绿素 a、叶绿素 b 和脱镁色素 a

水生古生产和色素保存的评估需要准确识别和量化沉积叶绿素。使用色谱技术以高分辨率分析长记录是不切实际的,因为它们既昂贵又费力。我们开发了一种新的快速且低成本的方法,可以通过 UV-VIS 测量的标准溶液和沉积物提取物的本体分光光度计吸收光谱的数学分解来推断叶绿素 a、叶绿素 b 和相关叶绿素衍生物(脱色色素 a)的浓度。我们针对标准溶液和富营养化卢加诺湖(瑞士南部 Ponte Tresa 子盆地)的变压缺氧沉积物的高效液相色谱 (HPLC) 测量验证了我们的方法,生产力的历史在二十世纪相对众所周知。我们的数学方法量化叶绿素 b 的浓度(RadJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \ usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{R}}_{{{\text{ad}}_{\text{J}}}}^{ 2} $$\end{document} = 0.99, RMSEP ~ 5.9%), 叶绿素 a (RadJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{R}}_{{{\text{ad}}_ {\text{J}}}}^{2} $$\end{document} = 0.98, RMSEP ~ 5.0%), 和焦脱镁叶绿素 a (RadJ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength {\oddsidemargin}{-69pt} \begin{document}$$ {\text{R}}_{{{\text{ad}}_{\text{J}}}}^{2} $$\end {document} = 0.99, RMSEP ~ 7.8%) 在标准溶液中。我们在我们的案例研究 (Ponte Tresa) 的沉积物样品中获得了总叶绿素 a(叶绿素 a + 脱镁色素 a)、叶绿素 a 和成岩产物(脱镁色素 a)的可比结果。在这里,叶绿素 b 的 HPLC 浓度非常低。然而,该方法有可能实现叶绿素 a/叶绿素 b 比率低于 3.4 的沉积物中叶绿素 b 浓度的值。Ponte Tresa 沉积物的色素地层与 20 世纪的古生产和富营养化历史非常吻合。用作沉积叶绿素保存定性指标的叶绿素 a 和脱色色素 a 之间的比率(叶绿素 a/{叶绿素 a + 脱色色素 a})与水生古生产仅微弱相关(radj = 0.35,p 值 = 0.045)并保持显着尽管存在强烈的人为富营养化,但在最近一个世纪保持不变。这种新方法有助于以经济高效的方式获取有关主要沉积色素群的信息,这些信息与推断古生产、潜在的绿藻生物量、色素保存和早期成岩作用有关。用作沉积叶绿素保存定性指标的叶绿素 a 和脱色色素 a 之间的比率(叶绿素 a/{叶绿素 a + 脱色色素 a})与水生古生产仅微弱相关(radj = 0.35,p 值 = 0.045)并保持显着尽管存在强烈的人为富营养化,但在最近一个世纪中保持不变。这种新方法有助于以经济高效的方式获取有关主要沉积色素群的信息,这些信息与推断古生产、潜在的绿藻生物量、色素保存和早期成岩作用有关。用作沉积叶绿素保存定性指标的叶绿素 a 和脱色色素 a 之间的比率(叶绿素 a/{叶绿素 a + 脱色色素 a})与水生古生产仅微弱相关(radj = 0.35,p 值 = 0.045)并保持显着尽管存在强烈的人为富营养化,但在最近一个世纪中保持不变。这种新方法有助于以经济高效的方式获取有关主要沉积色素群的信息,这些信息与推断古生产、潜在的绿藻生物量、色素保存和早期成岩作用有关。045) 并且在最近一个世纪保持非常稳定,尽管人为富营养化严重。这种新方法有助于以经济高效的方式获取有关主要沉积色素群的信息,这些信息与推断古生产、潜在的绿藻生物量、色素保存和早期成岩作用有关。045) 并且在近一个世纪保持非常稳定,尽管人为富营养化严重。这种新方法有助于以经济高效的方式获取有关主要沉积色素群的信息,这些信息与推断古生产、潜在的绿藻生物量、色素保存和早期成岩作用有关。
更新日期:2020-06-09
down
wechat
bug