当前位置: X-MOL 学术Curr. Opin. Genet. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The self-stirred genome: large-scale chromatin dynamics, its biophysical origins and implications.
Current Opinion in Genetics & Development ( IF 3.7 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.gde.2020.03.008
Alexandra Zidovska 1
Affiliation  

The organization and dynamics of human genome govern all cellular processes - directly impacting the central dogma of biology - yet are poorly understood, especially at large length scales. Chromatin, the functional form of DNA in cells, undergoes frequent local remodeling and rearrangements to accommodate processes such as transcription, replication and DNA repair. How these local activities contribute to nucleus-wide coherent chromatin motion, where micron-scale regions of chromatin move together over several seconds, remains unclear. Activity of nuclear enzymes was found to drive the coherent chromatin dynamics, however, its biological nature and physical mechanism remain to be revealed. The coherent dynamics leads to a perpetual stirring of the genome, leading to collective gene dynamics over microns and seconds, thus likely contributing to local and global gene-expression patterns. Hence, a possible biological role of chromatin coherence may involve gene regulation.

中文翻译:

自我搅拌的基因组:大规模染色质动力学,其生物物理起源和影响。

人类基因组的组织和动力学控制着所有细胞过程-直接影响生物学的中心教条-但知之甚少,尤其是在大尺度上。染色质是细胞中DNA的功能形式,经常进行局部重塑和重排,以适应转录,复制和DNA修复等过程。尚不清楚这些局部活动如何促进全核相干染色质运动(染色质的微米级区域在几秒钟内一起移动)。核酶的活性被发现驱动相干染色质动力学,但是,其生物学性质和物理机制仍有待揭示。相干的动力学导致基因组的永久性搅拌,从而导致微米级和秒级的集体基因动力学,因此可能有助于局部和全局基因表达模式。因此,染色质相干的可能生物学作用可能涉及基因调控。
更新日期:2020-06-01
down
wechat
bug