当前位置: X-MOL 学术Nanotechnology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interdigital electrodes of Air@NiO porous nanoshells for high performance microsupercapacitors by thermally-assisted 3D printing
Nanotechnology ( IF 2.9 ) Pub Date : 2020-06-30 , DOI: 10.1088/1361-6528/ab991d
Wei Yu 1 , Mengqiu Gao , Ben Q Li , Jin Liang , Shujiang Ding
Affiliation  

Microsupercapacitors of air@NiO porous nanoshells are manufactured by a novel thermally-assisted 3D printing process. It entails the use of printing inks of the moderate solid content of CNT-PS@Ni-precursor-nanoparticle mixture, a real-time heating substrate to print 3D interdigital electrodes, and subsequent thermal annealing to convert PS@Ni-precursor particles into air@NiO porous nanoshells. The microstructure of 3D printed electrodes is characterized by air@NiO porous nanoshells being well dispersed in the CNT network. The CNT network provides a fast electronic migration path and meanwhile ensures the mechanical integrity of electrodes to prevent the fracture and/or collapsing of electrode structures during 3D printing manufacturing and charging/discharging cycles. The air@NiO porous nanoshells, manufactured in our labs, consist of randomly oriented nanosheets and offer superb charge storage via redox reactions. The metal layer is sputtered indiscriminately on the surface of interdigital electrodes and substrate before it is peeled off with electrolyte film and electrodes. The proposed tactic resolves problems connected with the tedious courses of traditional lithography and the delamination at the interface of active materials and collectors from mechanical stress. Experiments were conducted to study the performance of the microsupercapacitors (i.e., areal capacitances, energy and power densities) as a function of printing parameters, such as electrode heights, embedded amount of air@NiO porous nanoshells and the thickness of the metal layer on the electrochemical characteristics. The thickness of as-printed electrodes reaches up to 117 μm, which is vital in ensuring high energy density and is beyond the reach of any other technology. Moreover, the 3D printed microsupercapacitors of air@NiO porous nanoshells show excellent cycle stability and deliver an excellent areal capacitance of 56.7 mF cm-2, about a magnitude or two higher than that of C-based counterparts.

中文翻译:

通过热辅助 3D 打印用于高性能微型超级电容器的 Air@NiO 多孔纳米壳的叉指电极

空气@NiO 多孔纳米壳的微型超级电容器是通过一种新型的热辅助 3D 打印工艺制造的。它需要使用中等固体含量的 CNT-PS@Ni-前体-纳米颗粒混合物的印刷油墨、实时加热基板来打印 3D 叉指电极,以及随后的热退火将 PS@Ni-前体颗粒转化为空气@NiO 多孔纳米壳。3D 打印电极的微观结构的特征是空气@NiO 多孔纳米壳很好地分散在 CNT 网络中。CNT 网络提供了快速的电子迁移路径,同时确保了电极的机械完整性,以防止在 3D 打印制造和充电/放电循环过程中电极结构的断裂和/或坍塌。我们实验室制造的 air@NiO 多孔纳米壳,由随机取向的纳米片组成,并通过氧化还原反应提供极好的电荷存储。在与电解质膜和电极剥离之前,金属层被不分青红皂白地溅射在叉指电极和基板的表面上。所提出的策略解决了与传统光刻的繁琐过程以及活性材料和集电器界面因机械应力分层相关的问题。进行实验以研究微型超级电容器的性能(即面电容、能量和功率密度)作为印刷参数的函数,例如电极高度、空气@NiO 多孔纳米壳的嵌入量和金属层的厚度。电化学特性。印刷电极的厚度高达 117 μm,这对于确保高能量密度至关重要,并且是任何其他技术无法企及的。此外,空气@NiO 多孔纳米壳的 3D 打印微型超级电容器显示出优异的循环稳定性,并提供 56.7 mF cm-2 的优异面电容,比 C 基对应物高出大约一两个数量级。
更新日期:2020-06-30
down
wechat
bug