当前位置: X-MOL 学术React. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reaction engineering and kinetics of algae conversion to biofuels and chemicals via pyrolysis and hydrothermal liquefaction
Reaction Chemistry & Engineering ( IF 3.4 ) Pub Date : 2020-06-08 , DOI: 10.1039/d0re00084a
Ribhu Gautam 1, 2, 3, 4 , R. Vinu 1, 2, 3, 4
Affiliation  

Algae are becoming increasingly popular as feedstocks for various fine chemicals and fuel intermediates. Cultivation of algae can be environment-friendly as they can fix high amounts of carbon dioxide in the environment, and also remove hazardous pollutants from wastewater. Moreover, algae cultivation presents a high per-hectare oil yield and faster growth rates than terrestrial biomasses. Owing to these advantages, algae are attractive candidates for harnessing energy. Thermochemical conversion techniques are promising as they offer a single-step conversion of algae species into valuable chemicals. In this article, pyrolysis and hydrothermal liquefaction technologies for the conversion of a variety of microalgae and macroalgae to bio-oil and biochemicals are discussed comprehensively. Different pyrolysis strategies such as fast pyrolysis, co-pyrolysis, microwave-assisted pyrolysis, and hydropyrolysis for the production of bio-oil of varying properties are outlined. The effect of catalysts in upgrading the quality of the bio-oil is evaluated. On the hydrothermal liquefaction front, the effects of operating parameters such as temperature, time, pressure, and solvent on the yields of products and the quality of bio-crude are covered in detail. Due emphasis is given to the kinetics of pyrolysis and hydrothermal liquefaction of algae, and different types of models, viz., apparent kinetics and lumped semi-detailed models, are discussed. The complex conversion pathways involved in these two processes are unraveled by presenting plausible reaction mechanisms and discussing the fate of nitrogen present in the algae. Furthermore, this review throws light on various aspects ranging from algae cultivation, the effect of culture conditions on the biochemical composition of algae species to techno-economic and lifecycle assessment of biofuels and chemicals derived from algae via thermochemical technologies. Finally, the challenges involved in the scale-up of thermochemical technologies and the development of detailed kinetic models are presented.

中文翻译:

通过热解和水热液化将藻类转化为生物燃料和化学品的反应工程和动力学

藻类作为各种精细化学品和燃料中间体的原料正变得越来越受欢迎。藻类的养殖可以保护环境,因为它们可以固定环境中的大量二氧化碳,还可以去除废水中的有害污染物。此外,与陆地生物量相比,藻类耕作具有很高的每公顷油产量和更快的生长速度。由于这些优点,藻类是利用能量的有吸引力的候选者。热化学转化技术前景广阔,因为它们可以将藻类物种一步转化为有价值的化学物质。在本文中,对将各种微藻和大藻转化为生物油和生化物质的热解和水热液化技术进行了全面的讨论。不同的热解策略,例如快速热解,概述了共热解,微波辅助热解和加氢热解生产各种性质的生物油的方法。评价了催化剂在提高生物油质量中的作用。在水热液化方面,将详细讨论温度,时间,压力和溶剂等操作参数对产品收率和生物原油质量的影响。适当重视藻类的热解和水热液化动力学,以及不同类型的模型,以及产品产量中的溶剂和生物原油的质量。适当重视藻类的热解和水热液化动力学,以及不同类型的模型,以及产品产量中的溶剂和生物原油的质量。适当重视藻类的热解和水热液化动力学,以及不同类型的模型,讨论了表观动力学和集总半详细模型。通过提出合理的反应机理并讨论藻类中存在的氮的命运,可以阐明这两个过程中涉及的复杂转化途径。此外,本综述从藻类种植,培养条件对藻类生物化学成分的影响到通过热化学技术对藻类衍生的生物燃料和化学品的技术经济和生命周期评估等各个方面进行了阐述。最后,介绍了热化学技术规模化和详细动力学模型的发展所涉及的挑战。
更新日期:2020-07-28
down
wechat
bug