当前位置: X-MOL 学术Mater. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Triarylmethanolation as a versatile strategy for the conversion of PAHs into amorphization-induced emission luminogens for extremely sensitive explosive detection and fabrication of artificial light-harvesting systems
Materials Chemistry Frontiers ( IF 6.0 ) Pub Date : 2020-06-08 , DOI: 10.1039/d0qm00229a
Min Su 1, 2, 3, 4, 5 , Ya-Nan Jing 1, 2, 3, 4, 5 , Hongli Bao 1, 2, 3, 4, 5 , Wen-Ming Wan 1, 2, 3, 4, 5
Affiliation  

Current synthetic strategies involving π-system coupling reactions for the molecular design of luminescent materials suffer from the challenging precise synthesis on the desired reactive site and also difficulty in solubility derived from the rigid structures of π-systems. Herein, a novel and versatile triarylmethanolation strategy for the molecular design of luminescent materials with facile synthesis and good solubility is reported. The prepared luminescent materials exhibit unique amorphization-induced emission (AmIE) behaviours, which represent an entropy-favoured and ubiquitous type of aggregation-induced emission that is currently famous and is contrary to crystallization-induced emission. Due to the outstanding AmIE behaviours, the luminescent materials exhibit applications in the fields of rewritable display and storage, extremely sensitive explosive detection at the ppb level, and high-efficiency artificial light-harvesting system with an antenna effect up to 21.3. This work therefore expands the methodology, structure, and functionality libraries of luminescent materials with outstanding properties in the application fields of explosive detection, energy transfer, and artificial light-harvesting systems.

中文翻译:

三芳基甲醇化是将PAHs转化为无定形诱导的发射致发光剂的通用策略,用于极灵敏的爆炸物检测和人工光收集系统的制造

当前涉及用于发光材料的分子设计的π-系统偶联反应的合成策略遭受在所需反应位上的具有挑战性的精确合成的困扰,并且还难以从π-系统的刚性结构获得溶解性。在本文中,报道了新颖且通用的三芳基甲醇化策略用于具有容易合成和良好溶解性的发光材料的分子设计。制备的发光材料表现出独特的非晶化诱导发射(AmIE)行为,这代表了熵诱导的和无处不在的聚集诱导发射的类型,该现象目前是著名的,与结晶诱导发射相反。由于出色的AmIE行为,发光材料在可擦写显示和存储领域中展示了其应用,ppb级的超灵敏爆炸物检测以及高效的人工光收集系统,天线效应高达21.3。因此,这项工作扩展了具有爆炸性的发光材料的方法,结构和功能库,在爆炸物检测,能量转移和人工光收集系统的应用领域中具有出色的性能。
更新日期:2020-07-30
down
wechat
bug