当前位置: X-MOL 学术Front. Syst. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Neuroanatomically Grounded Optimal Control Model of the Compensatory Eye Movement System in Mice
Frontiers in Systems Neuroscience ( IF 3.1 ) Pub Date : 2020-03-25 , DOI: 10.3389/fnsys.2020.00013
Peter J Holland 1, 2, 3 , Tafadzwa M Sibindi 1, 2, 4 , Marik Ginzburg 2 , Suman Das 1, 2 , Kiki Arkesteijn 1, 5, 6 , Maarten A Frens 1 , Opher Donchin 1, 2, 7
Affiliation  

We present a working model of the compensatory eye movement system in mice. We challenge the model with a data set of eye movements in mice (n =34) recorded in 4 different sinusoidal stimulus conditions with 36 different combinations of frequency (0.1–3.2 Hz) and amplitude (0.5–8°) in each condition. The conditions included vestibular stimulation in the dark (vestibular-ocular reflex, VOR), optokinetic stimulation (optokinetic reflex, OKR), and two combined visual/vestibular conditions (the visual-vestibular ocular reflex, vVOR, and visual suppression of the VOR, sVOR). The model successfully reproduced the eye movements in all conditions, except for minor failures to predict phase when gain was very low. Most importantly, it could explain the interaction of VOR and OKR when the two reflexes are activated simultaneously during vVOR stimulation. In addition to our own data, we also reproduced the behavior of the compensatory eye movement system found in the existing literature. These include its response to sum-of-sines stimuli, its response after lesions of the nucleus prepositus hypoglossi or the flocculus, characteristics of VOR adaptation, and characteristics of drift in the dark. Our model is based on ideas of state prediction and forward modeling that have been widely used in the study of motor control. However, it represents one of the first quantitative efforts to simulate the full range of behaviors of a specific system. The model has two separate processing loops, one for vestibular stimulation and one for visual stimulation. Importantly, state prediction in the visual processing loop depends on a forward model of residual retinal slip after vestibular processing. In addition, we hypothesize that adaptation in the system is primarily adaptation of this model. In other words, VOR adaptation happens primarily in the OKR loop.

中文翻译:


小鼠补偿性眼动系统的神经解剖学最优控制模型



我们提出了小鼠补偿性眼动系统的工作模型。我们用在 4 种不同的正弦刺激条件下记录的小鼠眼球运动数据集 (n = 34) 来挑战该模型,每种条件下有 36 种不同的频率 (0.1–3.2 Hz) 和幅度 (0.5–8°) 组合。这些条件包括黑暗中的前庭刺激(前庭眼反射,VOR)、视动刺激(视动反射,OKR)和两种组合的视觉/前庭条件(视觉前庭眼反射,vVOR和VOR的视觉抑制, sVOR)。该模型成功地再现了所有条件下的眼球运动,除了增益非常低时预测相位的轻微失败之外。最重要的是,它可以解释在 vVOR 刺激期间同时激活两种反射时 VOR 和 OKR 的相互作用。除了我们自己的数据之外,我们还重现了现有文献中发现的补偿性眼动系统的行为。这些包括它对正弦和刺激的反应、舌下核或絮球损伤后的反应、VOR适应的特征以及在黑暗中漂移的特征。我们的模型基于已广泛应用于电机控制研究的状态预测和正演建模的思想。然而,它代表了模拟特定系统全方位行为的首批定量努力之一。该模型有两个独立的处理循环,一个用于前庭刺激,一个用于视觉刺激。重要的是,视觉处理循环中的状态预测取决于前庭处理后残余视网膜滑动的正向模型。此外,我们假设系统的适应主要是对该模型的适应。 换句话说,VOR 适配主要发生在 OKR 循环中。
更新日期:2020-03-25
down
wechat
bug