当前位置: X-MOL 学术Angew. Chem. Int. Ed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage.
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2020-06-07 , DOI: 10.1002/anie.202005270
Hongyun Ma 1 , Hongwu Chen 1 , Mingmao Wu 1 , Fengyao Chi 1 , Feng Liu 2 , Jiaxin Bai 3 , Huhu Cheng 3 , Chun Li 1 , Liangti Qu 1, 3
Affiliation  

Capacitive energy storage has advantages of high power density, long lifespan, and good safety, but is restricted by low energy density. Inspired by the charge storage mechanism of batteries, a spatial charge density (SCD) maximization strategy is developed to compensate this shortage by densely and neatly packing ionic charges in capacitive materials. A record high SCD (ca. 550 C cm−3) was achieved by balancing the valance and size of charge‐carrier ions and matching the ion sizes with the pore structure of electrode materials, nearly five times higher than those of conventional ones (ca. 120 C cm−3). The maximization of SCD was confirmed by Monte Carlo calculations, molecular dynamics simulations, and in situ electrochemical Raman spectroscopy. A full‐cell supercapacitor was further constructed; it delivers an ultrahigh energy density of 165 Wh L−1 at a power density of 150 WL−1 and retains 120 Wh L−1 even at 36 kW L−1, opening a pathway towards high‐energy‐density capacitive energy storage.

中文翻译:

空间电荷密度的最大化:电容电荷存储的超高能量密度的一种方法。

电容储能具有功率密度高,寿命长,安全性好的优点,但受能量密度低的限制。受电池电荷存储机制的启发,开发了一种空间电荷密度(SCD)最大化策略,以通过在电容性材料中密集且整齐地填充离子电荷来弥补这种不足。通过平衡电荷载流子离子的化合价和大小,并使离子大小与电极材料的孔结构相匹配,实现了创纪录的高SCD(约550 C cm -3),几乎是传统材料的约五倍(ca 。120 C厘米-3)。通过蒙特卡洛计算,分子动力学模拟和原位电化学拉曼光谱证实了SCD的最大化。进一步构建了全电池超级电容器。它提供的165瓦时升的超高能量密度-1在150 WL的功率密度-1并保持120瓦时大号-1甚至在36千瓦大号-1,向高能量密度的电容能量储存开口的通道。
更新日期:2020-08-10
down
wechat
bug