当前位置: X-MOL 学术Prog. Energy Combust. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Combustion kinetics of H2S and other sulfurous species with relevance to industrial processes
Progress in Energy and Combustion Science ( IF 32.0 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.pecs.2020.100848
Abhijeet Raj , Salisu Ibrahim , Anoop Jagannath

Abstract Raw natural gas and crude oil contain a variety of sulfurous species such as H2S, COS, CS2, mercaptans, and organosulfur complexes that lead to the formation of SO2 and other sulfurous compounds during combustion. The strict regulation on their emission has motivated the development of oil and gas sweetening processes, where such species are removed from fuels, and a sulfur-rich stream is generated. Many industries and plants such as cement industry, smelters, and power plants, involving the combustion of sulfur-bearing fuels, also generate gas streams rich in sulfur compounds. Such gas streams are mainly treated using sulfur recovery units (SRUs). To understand combustion occurring in SRUs, various studies on exploring the mechanism and the kinetics of sulfur-related reactions have been conducted. This review highlights the advancements in the kinetic models and the experiments on the combustion of sulfurous species and their interaction with hydrocarbons. The operational and the pilot plant data on H2S combustion in furnaces and the lab-scale experiments on sulfur oxidation, reduction, and sulfur-hydrocarbon reactions are discussed that have provided valuable data to validate combustion models. Due to the complex nature of sulfur chemistry, the quantum calculations on sulfur reactions have helped tremendously in improving the kinetic models. The findings of the potential energy surface studies with different spin multiplicities for major reactions affecting the combustion of sulfurous species such as the reactions of H2S and HS with oxidants (e.g., O2 and SO2), sulfur-hydrogen reaction leading to disulfur species, and the hydrocarbon-sulfur interactions leading to COS, CS2, mercaptan, and S-PAH formation are discussed. The combination of quantum calculations, reactor modeling, and experimental studies have improved our understanding on the role of various intermediates such as disulfur species in the combustion of H2S that was not known before. The detailed models have also helped in predicting the formation of large PAHs in the furnace that possibly explain the carbon-sulfur complexes found in the downstream catalytic units and in the process optimization to reduce the sulfur production cost. The recent developments on the innovation utilization of acid gas to produce hydrogen or syngas, SO2 to produce sulfur, and sulfur as an energy vector in thermochemical cycles for electricity generation are discussed.

中文翻译:

与工业过程相关的 H2S 和其他含硫物质的燃烧动力学

摘要 原天然气和原油中含有多种含硫物质,如 H2S、COS、CS2、硫醇和有机硫配合物,在燃烧过程中会形成 SO2 和其他含硫化合物。对其排放的严格规定推动了石油和天然气脱硫工艺的发展,从燃料中去除这些物质,并产生富含硫的物流。许多涉及含硫燃料燃烧的工业和工厂,例如水泥工业、冶炼厂和发电厂,也会产生富含硫化合物的气流。此类气流主要使用硫回收装置 (SRU) 进行处理。为了了解 SRU 中发生的燃烧,已经进行了各种探索硫相关反应机理和动力学的研究。本综述重点介绍了动力学模型和含硫物质燃烧及其与碳氢化合物相互作用实验的进展。讨论了熔炉中 H2S 燃烧的操作和中试数据,以及硫氧化、还原和硫-烃反应的实验室规模实验,这些数据为验证燃烧模型提供了宝贵的数据。由于硫化学的复杂性,硫反应的量子计算极大地帮助了改进动力学模型。对于影响含硫物质燃烧的主要反应(例如 H2S 和 HS 与氧化剂(例如 O2 和 SO2)的反应、导致二硫物质的硫-氢反应、讨论了导致 COS、CS2、硫醇和 S-PAH 形成的烃-硫相互作用。量子计算、反应器建模和实验研究的结合提高了我们对各种中间体(如二硫物质)在 H2S 燃烧中的作用的理解,这是以前未知的。详细的模型还有助于预测熔炉中大型多环芳烃的形成,这可能解释了下游催化装置和工艺优化中发现的碳硫复合物,以降低硫生产成本。讨论了创新利用酸性气体生产氢气或合成气、二氧化硫生产硫以及硫作为热化学循环中用于发电的能量载体的最新进展。和 S-PAH 的形成进行了讨论。量子计算、反应器建模和实验研究的结合提高了我们对各种中间体(如二硫物质)在 H2S 燃烧中的作用的理解,这是以前未知的。详细的模型还有助于预测熔炉中大型多环芳烃的形成,这可能解释了下游催化装置和工艺优化中发现的碳硫复合物,以降低硫生产成本。讨论了创新利用酸性气体生产氢气或合成气、二氧化硫生产硫以及硫作为热化学循环中用于发电的能量载体的最新进展。和 S-PAH 的形成进行了讨论。量子计算、反应器建模和实验研究的结合提高了我们对各种中间体(如二硫物质)在 H2S 燃烧中的作用的理解,这是以前未知的。详细的模型还有助于预测熔炉中大型多环芳烃的形成,这可能解释了下游催化装置和工艺优化中发现的碳硫复合物,以降低硫生产成本。讨论了创新利用酸性气体生产氢气或合成气、二氧化硫生产硫以及硫作为热化学循环中用于发电的能量载体的最新进展。和实验研究提高了我们对各种中间体(如二硫物质)在 H2S 燃烧中的作用的理解,这是以前未知的。详细的模型还有助于预测熔炉中大型多环芳烃的形成,这可能解释了下游催化装置和工艺优化中发现的碳硫复合物,以降低硫生产成本。讨论了创新利用酸性气体生产氢气或合成气、二氧化硫生产硫以及硫作为热化学循环中用于发电的能量载体的最新进展。和实验研究提高了我们对各种中间体(如二硫物质)在 H2S 燃烧中的作用的理解,这是以前未知的。详细的模型还有助于预测熔炉中大型多环芳烃的形成,这可能解释了下游催化装置和工艺优化中发现的碳硫复合物,以降低硫生产成本。讨论了创新利用酸性气体生产氢气或合成气、二氧化硫生产硫以及硫作为热化学循环中用于发电的能量载体的最新进展。详细的模型还有助于预测熔炉中大型多环芳烃的形成,这可能解释了下游催化装置和工艺优化中发现的碳硫复合物,以降低硫生产成本。讨论了创新利用酸性气体生产氢气或合成气、二氧化硫生产硫以及硫作为热化学循环中用于发电的能量载体的最新进展。详细的模型还有助于预测熔炉中大型多环芳烃的形成,这可能解释了下游催化装置和工艺优化中发现的碳硫复合物,以降低硫生产成本。讨论了创新利用酸性气体生产氢气或合成气、二氧化硫生产硫以及硫作为热化学循环中用于发电的能量载体的最新进展。
更新日期:2020-09-01
down
wechat
bug