当前位置: X-MOL 学术Mater. Charact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailoring microstructure and texture of annealed Al-Mn alloy through the variation of homogenization and prior cold deformation strain
Materials Characterization ( IF 4.7 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.matchar.2020.110438
X.W. Fang , H. Xiao , K. Marthinsen , A. Belyakov , X.Y. Fang , Ke Huang

Abstract The grain structures and crystallographic textures desired for various applications of aluminium alloys are usually modified by recrystallization during annealing. In this study, the interactions between recrystallization and precipitation were investigated using the same Al-Mn alloy but with different homogenization procedures (which gives different microchemistries in terms of solute level and second phase particle state) and prior cold deformation strains, both of which are easy to realize in industrial practice. The results show that recrystallization and precipitation kinetics are both promoted at large deformations but their mutual interactions also exist. Recrystallization is retarded by precipitation through the suppressing of nucleation and pinning of grain boundary migration, while early finish of recrystallization delays precipitation by reducing their nucleation sites. The delicate interplay between recrystallization and precipitation during annealing leads to different combinations of grain structures and textures. An equiaxed fine grain structure can be obtained when recrystallization is not affected by fine particles while the combined effects of a strong fibrous deformation structure, suppressed nucleation of recrystallization and preferential growth lead to a coarse elongated grain structure. Different crystallographic textures desired for typical applications of Al-Mn alloys can be obtained after annealing simply through the different combinations of homogenization procedures and prior cold deformations.

中文翻译:

通过均质化和预冷变形应变的变化对退火铝锰合金的显微组织和织构进行裁剪

摘要 铝合金的各种应用所需的晶粒结构和晶体织构通常在退火过程中通过再结晶来改变。在这项研究中,使用相同的 Al-Mn 合金但采用不同的均质化程序(在溶质水平和第二相粒子状态方面给出不同的微观化学)和先前的冷变形应变研究了再结晶和析出之间的相互作用,这两者都是在工业实践中易于实现。结果表明,再结晶和析出动力学都在大变形下得到促进,但它们之间也存在相互作用。通过抑制晶界迁移的成核和钉扎,析出延迟了再结晶,而过早完成再结晶通过减少其成核位点来延迟沉淀。退火过程中再结晶和沉淀之间微妙的相互作用导致晶粒结构和织构的不同组合。当再结晶不受细颗粒的影响时,可以获得等轴细晶粒结构,而强烈的纤维状变形结构、抑制再结晶形核和优先生长的综合作用导致粗大的细长晶粒结构。简单地通过均质化程序和预先冷变形的不同组合,可以在退火后获得 Al-Mn 合金典型应用所需的不同晶体织构。退火过程中再结晶和沉淀之间微妙的相互作用导致晶粒结构和织构的不同组合。当再结晶不受细颗粒的影响时,可以获得等轴细晶粒结构,而强烈的纤维状变形结构、抑制再结晶形核和优先生长的综合作用导致粗大的细长晶粒结构。简单地通过均质化程序和预先冷变形的不同组合,可以在退火后获得 Al-Mn 合金典型应用所需的不同晶体织构。退火过程中再结晶和沉淀之间微妙的相互作用导致晶粒结构和织构的不同组合。当再结晶不受细颗粒的影响时,可以获得等轴细晶粒结构,而强烈的纤维状变形结构、抑制再结晶形核和优先生长的综合作用导致粗大的细长晶粒结构。简单地通过均质化程序和预先冷变形的不同组合,可以在退火后获得 Al-Mn 合金典型应用所需的不同晶体织构。当再结晶不受细颗粒的影响时,可以获得等轴细晶粒结构,而强烈的纤维状变形结构、抑制再结晶形核和优先生长的综合作用导致粗大的细长晶粒结构。简单地通过均质化程序和预先冷变形的不同组合,可以在退火后获得 Al-Mn 合金典型应用所需的不同晶体织构。当再结晶不受细颗粒的影响时,可以获得等轴细晶粒结构,而强烈的纤维状变形结构、抑制再结晶形核和优先生长的综合作用导致粗大的细长晶粒结构。简单地通过均质化程序和预先冷变形的不同组合,可以在退火后获得 Al-Mn 合金典型应用所需的不同晶体织构。
更新日期:2020-08-01
down
wechat
bug