当前位置: X-MOL 学术J. Taiwan Inst. Chem. E. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting the photocatalytic ability of hybrid biVO4-TiO2 heterostructure nanocomposites for H2 production by reduced graphene oxide (rGO)
Journal of the Taiwan Institute of Chemical Engineers ( IF 5.5 ) Pub Date : 2020-06-06 , DOI: 10.1016/j.jtice.2020.04.001
Abbas Sadeghzadeh-Attar

Fabricating heterostructures has been recognized as an effective strategy to improve visible-light photocatalytic H2 production performance. Therefore, a simple approach based on combining template-assisted liquid-phase deposition and hydrothermal techniques was introduced to synthesize BiVO4-TiO2/reduced graphene oxide (rGO) heterostructure nanocomposites. The ternary hetero-nanostructures were composed of TiO2 nanotubes, with an average diameter of 100 nm and tens micrometers in length, BiVO4 nanoparticles and various amounts of rGO nanosheets. The highest photocatalytic H2 production rate of 1427.1 μmol.h1 g1 with an apparent quantum yield of 6.4% at 420 nm was achieved at optimum rGO content (3 wt.%) under visible-light irradiation, which was 2.5 and 1.5 times higher than that of TiO2 nanotubes)563.5 μmol.h1 g1) and BiVO4-TiO2 (915.7 μmol.h1 g1), respectively. The excellent enhancing effect of rGO on photocatalytic performance of the heterojunction formed between these materials was attributed to the large surface area, light absorption capacity due to band gap engineering, and separation of photo-generated charge carriers. It demonstrates the design of the ternary BiVO4-TiO2/rGO hetero-nanostructures that was proposed in the present strategy could effectively separate the electron-hole pairs for sustainable photocatalytic H2 production, as was verified by PL, TRF and EIS photospectroscopy measurements.



中文翻译:

通过还原氧化石墨烯(rGO)增强biVO 4 -TiO 2杂化杂化纳米复合纳米复合材料对H 2产生的光催化能力

制备异质结构已被认为是改善可见光光催化H 2生产性能的有效策略。因此,引入了一种基于模板辅助液相沉积与水热技术相结合的简单方法来合成BiVO 4 -TiO 2 /还原氧化石墨烯(rGO)异质结构纳米复合材料。三元杂纳米结构由平均直径为100 nm,长度为数十微米的TiO 2纳米管,BiVO 4纳米颗粒和各种数量的rGO纳米片组成。最高的光催化H 2产生速率为1427.1μmol。h - 1 -在可见光照射下,在最佳rGO含量(3 wt。%)下,在420 nm处的表观量子产率为1,达到了最佳的rGO含量(3 wt。%),是TiO 2纳米管563.5μmol的2.5和1.5倍。ħ - 1 - 1)和BiVO 4 -TiO 2(915.7微摩尔。ħ - 1 - 1), 分别。rGO对这些材料之间形成的异质结的光催化性能的出色增强作用归因于大表面积,带隙工程引起的光吸收能力以及光生载流子的分离。它证明了本策略中提出的三元BiVO 4 -TiO 2 / rGO异质纳米结构的设计可以有效分离电子-空穴对,以实现可持续的光催化H 2生成,这已通过PL,TRF和EIS光谱学测量得到了证实。 。

更新日期:2020-07-20
down
wechat
bug