当前位置: X-MOL 学术Comput. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application of Flux Vector Splitting Methods with SST Turbulence Model to Wall-Bounded Flows
Computers & Fluids ( IF 2.5 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.compfluid.2020.104611
K. Manokaran , M. Ramakrishna , T. Jayachandran

Abstract An explicit 3D Reynolds Averaged Navier-Stokes solver SURFS3D has been developed and run on a structured grid. A 4-stage Runge-Kutta (RK) method is used for the time integration and OpenMP is used to parallelize the solver. This is used as a platform to compare Van Leer’s Flux Vector Splitting Method (VLFVSM) to a variant of Liou’s Advection Upstream Splitting with velocity and pressure diffusion (AUSM + -up2). The code results are validated for wall bounded flows. Menter’s k − ω Shear Stress Transport (SST) turbulence model is employed and validated for turbulent flows. The SST turbulence model is selected due to its capability to predict the shock location and separation location in adverse pressure gradient accurately. The validation cases are laminar and turbulent incompressible flows and turbulent supersonic flow over flat plate, transonic flow over an axisymmetric bump, and supersonic flow over a blunt bi-conic configuration. It is observed that VLFVSM+SST lacks accurate viscous prediction capability for the wall-bounded flows at low speeds compared to AUSM + -up2+SST, which works well at low speed. In transonic flow conditions, both schemes perform well. AUSM + -up2 scheme exhibits mild carbuncle problem for Mach 3.0 flow over a blunt biconic configuration, whereas, VLFVSM is free from this problem. Overall, the SST turbulence model performance is good for all the validation cases studied.

中文翻译:

带SST湍流模型的通量向量分裂方法在有界流动中的应用

摘要 一个显式的 3D 雷诺平均纳维-斯托克斯求解器 SURFS3D 已被开发并在结构化网格上运行。4 阶段 Runge-Kutta (RK) 方法用于时间积分,OpenMP 用于并行化求解器。这被用作一个平台,将 Van Leer 的通量矢量分裂方法 (VLFVSM) 与 Liou 的具有速度和压力扩散的平流上游分裂 (AUSM + -up2) 的变体进行比较。代码结果针对有界流进行验证。Menter 的 k − ω 剪切应力传递 (SST) 湍流模型被采用并针对湍流进行了验证。选择 SST 湍流模型是因为它能够准确预测逆压力梯度下的冲击位置和分离位置。验证案例是不可压缩的层流和湍流以及平板上的湍流超声速流,轴对称凸起上的跨音速流动,以及钝双圆锥结构上的超音速流动。观察到,与 AUSM+-up2+SST 相比,VLFVSM+SST 在低速下对壁面流动缺乏准确的粘性预测能力,AUSM+-up2+SST 在低速下运行良好。在跨音速流动条件下,两种方案都表现良好。AUSM + -up2 方案在钝双锥结构上的 3.0 马赫流中表现出轻微的痈问题,而 VLFVSM 则没有这个问题。总体而言,SST 湍流模型的性能适用于所有研究的验证案例。在跨音速流动条件下,两种方案都表现良好。AUSM + -up2 方案在钝双锥结构上的 3.0 马赫流中表现出轻微的痈问题,而 VLFVSM 则没有这个问题。总体而言,SST 湍流模型的性能适用于所有研究的验证案例。在跨音速流动条件下,两种方案都表现良好。AUSM + -up2 方案在钝双锥结构上的 3.0 马赫流中表现出轻微的痈问题,而 VLFVSM 则没有这个问题。总体而言,SST 湍流模型的性能适用于所有研究的验证案例。
更新日期:2020-08-01
down
wechat
bug