当前位置: X-MOL 学术Theory Comput. Syst. › 论文详情
Complexity and Algorithms for Semipaired Domination in Graphs
Theory of Computing Systems ( IF 0.497 ) Pub Date : 2020-06-06 , DOI: 10.1007/s00224-020-09988-3
Michael A. Henning, Arti Pandey, Vikash Tripathi

For a graph G = (V, E) with no isolated vertices, a set \(D\subseteq V\) is called a semipaired dominating set of G if (i)D is a dominating set of G, and (ii)D can be partitioned into two element subsets such that the vertices in each two element set are at distance at most two. The minimum cardinality of a semipaired dominating set of G is called the semipaired domination number of G, and is denoted by γpr2(G). The Minimum Semipaired Domination problem is to find a semipaired dominating set of G of cardinality γpr2(G). In this paper, we initiate the algorithmic study of the Minimum Semipaired Domination problem. We show that the decision version of the Minimum Semipaired Domination problem is NP-complete for bipartite graphs and chordal graphs. On the positive side, we present a linear-time algorithm to compute a minimum cardinality semipaired dominating set of interval graphs. We also propose a \(1+\ln (2{\Delta }+2)\)-approximation algorithm for the Minimum Semipaired Domination problem, where Δ denotes the maximum degree of the graph and show that the Minimum Semipaired Domination problem cannot be approximated within \((1-\epsilon ) \ln |V|\) for any 𝜖 > 0 unless P=NP.
更新日期:2020-07-02

 

全部期刊列表>>
胸部和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
华东师范大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
王杰
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug