当前位置: X-MOL 学术Ionics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Honeycomb-like amorphous VPO 4 /C spheres with improved sodium storage performance as anode materials for sodium-ion batteries
Ionics ( IF 2.4 ) Pub Date : 2020-06-06 , DOI: 10.1007/s11581-020-03639-w
Ji Yan , Jian-Hui Zhang , Jia-Jia Qi , Lei Li , He-Wei Luo , Yang Cao , Yong Zhang , Yuan-Li Ding , Li-Zhen Wang

In this article, honeycomb-like amorphous VPO4/C spheres were successfully synthesized via a sol-gel combined hydrothermal route and then tested as anode materials for sodium-ion batteries. After characterized by structure analysis, morphological observation, and composition determination, the prepared VPO4/C materials exhibit amorphous structure and spherical morphology with honeycomb-like core framework shielded by compact out-layer shell when compared with its crystalline counterpart. As anode material for sodium storage performance, the amorphous VPO4/C delivers a high discharge capacity of 421.1 mAh g−1 at a current density of 100 mA g−1 and exhibits a good cycling stability upon 100 cycles under 500 mA g−1. The enhancement of electrochemical sodium storage performances can be attributed to the honeycomb-like inner structure facilitating the diffusion of sodium ion and the observable compact out-layer buffering the large volume strains in cycling. Meanwhile, the observed channel-like caves can provide wealthy space for storing richer sodium ion, leading to higher capacity. The proposed viewpoint points out that the synthesis of amorphous architecture is a new strategy to break through the limitation of anode materials for sodium-ion batteries.

中文翻译:

蜂窝状无定形VPO 4 / C球,具有改善的钠存储性能,作为钠离子电池的负极材料

在本文中,通过溶胶-凝胶结合水热法成功地合成了蜂窝状无定形VPO 4 / C球,然后将其用作钠离子电池的负极材料。经结构分析,形貌观察和组成确定后,所制得的VPO 4 / C材料呈现出无定形结构和球形结构,蜂窝状芯骨架被致密的外层壳屏蔽,与结晶态的相比。作为钠储存性能的负极材料,非晶态VPO 4 / C在100 mA g -1的电流密度下可提供421.1 mAh g -1的高放电容量并在500 mA g -1下100次循环时表现出良好的循环稳定性。电化学钠存储性能的增强可归因于蜂窝状内部结构,促进了钠离子的扩散,并且可观察到的致密外层缓冲了循环中的大体积应变。同时,观察到的通道状洞穴可以提供丰富的空间来储存更丰富的钠离子,从而提高容量。提出的观点指出,非晶结构的合成是突破钠离子电池负极材料局限性的一种新策略。
更新日期:2020-06-06
down
wechat
bug