当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Co3O4 Nanosheets Preferentially Growing (220) Facet with a Large Amount of Surface Chemisorbed Oxygen for Efficient Oxidation of Elemental Mercury from Flue Gas.
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2020-06-04 , DOI: 10.1021/acs.est.0c03427
Hongda Zhu 1 , Xinxin Song 1 , Xiangkai Han 1 , Xiaopeng Zhang 1 , Junjiang Bao 1 , Ning Zhang 1 , Gaohong He 1
Affiliation  

Oxygen vacancies can capture and activate gaseous oxygen, forming surface chemisorbed oxygen, which plays an important role in the Hg0 oxidation process. Fine control of oxygen vacancies is necessary and a major challenge in this field. A novel method for facet control combined with morphology control was used to synthesize Co3O4 nanosheets preferentially growing (220) facet to give more oxygen vacancies. X-ray photoelectron spectroscopy (XPS) results show that the (220) facet has a higher Co3+/Co2+ ratio, leading to more oxygen vacancies via the Co3+ reduction process. Density functional theory (DFT) calculations confirm that the (220) facet has a lower oxygen vacancy formation energy. Furthermore, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results suggest that Co3O4 nanosheets yield more defects during the synthesis process. These results are the reasons for the greater number of oxygen vacancies in Co3O4 nanosheets, which is confirmed by electron energy loss spectroscopy (EELS), Raman spectroscopy, and photoluminescence (PL) spectroscopy. Therefore, Co3O4 nanosheets show excellent Hg0 removal efficiency over a wide temperature range of 100–350 °C at a high gas hourly space velocity (GHSV) of 180 000 h–1. Additionally, the catalytic efficiency of Co3O4 nanosheets is still greater than 83%, even after 80 h of testing, and it recovers to its original level after 2 h of in situ thermal treatment at 500 °C.

中文翻译:

Co3O4纳米片优先生长(220)刻面,该刻面具有大量表面化学吸附的氧气,可从烟气中高效氧化元素汞。

氧空位可以捕获并活化气态氧,形成表面化学吸附的氧,这在Hg 0氧化过程中起重要作用。氧空位的精细控制是必要的,也是该领域的主要挑战。一种新的面控制方法与形态控制相结合,用于合成优先生长(220)面的Co 3 O 4纳米片,以提供更多的氧空位。X射线光电子能谱(XPS)结果表明(220)晶面具有较高的Co 3+ / Co 2+比,从而通过Co 3+导致更多的氧空位还原过程。密度泛函理论(DFT)计算证实(220)晶面具有较低的氧空位形成能。此外,扫描电子显微镜(SEM)和透射电子显微镜(TEM)的结果表明,Co 3 O 4纳米片在合成过程中产生更多的缺陷。这些结果是Co 3 O 4纳米片中氧空位数量更大的原因,这可以通过电子能量损失光谱(EELS),拉曼光谱和光致发光(PL)光谱得到证实。因此,Co 3 O 4纳米片显示出极好的Hg 0在180000 h –1的高气体时空速度(GHSV)下,在100–350°C的较宽温度范围内的去除效率。此外,即使经过80小时的测试,Co 3 O 4纳米片的催化效率仍然高于83%,并且在500°C的原位热处理2小时后,其恢复到原来的水平。
更新日期:2020-07-21
down
wechat
bug