当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photo-molecular high temperature superconductivity
Physical Review X ( IF 11.6 ) Pub Date : 
M. Buzzi, D. Nicoletti, M. Fechner, N. Tancogne-Dejean, M. A. Sentef, A. Georges, T. Biesner, E. Uykur, M. Dressel, A. Henderson, T. Siegrist, J. A. Schlueter, K. Miyagawa, K. Kanoda, M. -S. Nam, A. Ardavan, J. Coulthard, J. Tindall, F. Schlawin, D. Jaksch, A. Cavalleri

The properties of organic conductors are often tuned by the application of chemical or external pressure, which change orbital overlaps and electronic bandwidths whilst leaving the molecular building blocks virtually unperturbed. Here we show that, unlike any other method, light can be used to manipulate the local electronic properties at the molecular sites, giving rise to new emergent properties. Targeted molecular excitations in the charge-transfer salt -(BEDT-TTF)2Cu[N(CN)2]Br induce a colossal increase in carrier mobility and the opening of a superconducting optical gap. Both features track the density of quasi-particles of the equilibrium metal, and can be observed up to a characteristic coherence temperature T* 50 K, far higher than the equilibrium transition temperature Tc = 12.5 K. Notably, the large optical gap achieved by photo-excitation is not observed in the equilibrium superconductor, pointing to a light induced state that is different from that obtained by cooling. First-principle calculations and model Hamiltonian dynamics predict a transient state with long-range pairing correlations, providing a possible physical scenario for photo-molecular superconductivity.

中文翻译:

光分子高温超导

通常通过施加化学或外部压力来调节有机导体的性能,所述化学或外部压力会改变轨道重叠和电子带宽,而实际上使分子构建基块不受干扰。在这里,我们表明,与任何其他方法不同,光可以用于操纵分子位置处的局部电子性质,从而产生新的出射性质。电荷转移盐-(BEDT-TTF)2Cu [N(CN)2] Br中的靶向分子激发诱导载流子迁移的巨大增加和超导光学间隙的打开。这两个特征都跟踪平衡金属的准粒子的密度,并且可以观察到特征相干温度T * 50 K,远高于平衡转变温度Tc = 12.5K。在平衡超导体中未观察到通过光激励获得的大光学间隙,这表明光诱导态与冷却态不同。第一性原理计算和模型哈密顿动力学预测具有长程配对相关性的瞬态,为光分子超导性提供了可能的物理场景。
更新日期:2020-06-05
down
wechat
bug