当前位置: X-MOL 学术J. Geod. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Methods for coherent optical Doppler orbitography
Journal of Geodesy ( IF 3.9 ) Pub Date : 2020-06-01 , DOI: 10.1007/s00190-020-01380-w
Benjamin P. Dix-Matthews , Sascha W. Schediwy , David R. Gozzard , Simon Driver , Karl Ulrich Schreiber , Randall Carman , Michael Tobar

Doppler orbitography uses the Doppler shift in a transmitted signal to determine the orbital parameters of satellites including range and range rate (or radial velocity). We describe two techniques for atmospheric-limited optical Doppler orbitography measurements of range rate. The unstabilised technique determines the Doppler shift directly from a heterodyne measurement of the returned optical signal. The stabilised technique aims to improve the precision of the first by suppressing atmospheric phase noise imprinted on the transmitted optical signal. We demonstrate the performance of each technique over a 2.2km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.2\,\hbox {km}$$\end{document} horizontal link with a simulated in-line velocity Doppler shift at the far end. A horizontal link of this length has been estimated to exhibit nearly half the total integrated atmospheric turbulence of a vertical link to space. Without stabilisation of the atmospheric effects, we obtained an estimated range rate precision of 17μms-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$17\,{\upmu }\hbox {m}\,\hbox {s}^{-1}$$\end{document} at 1s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\,\hbox {s}$$\end{document} of integration. With active suppression of atmospheric phase noise, this is improved by three orders of magnitude to an estimated range rate precision of 9.0nms-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9.0\,\hbox {nm}\,\hbox {s}^{-1}$$\end{document} at 1s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\,\hbox {s}$$\end{document} of integration, and 1.1nms-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1\,\hbox {nm}\,\hbox {s}^{-1}$$\end{document} when integrated over 60s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$60\,\hbox {s}$$\end{document}. This represents four orders of magnitude improvement over the typical performance of operational ground to space X-Band systems in terms of range rate precision at the same integration time. The performance of this system is a promising proof of concept for coherent optical Doppler orbitography. There are many additional challenges associated with performing these techniques from ground to space that were not captured within the preliminary experiments presented here. In the future, we aim to progress towards a 10km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,\hbox {km}$$\end{document} horizontal link to replicate the expected atmospheric turbulence for a ground to space link.

中文翻译:

相干光学多普勒轨道成像方法

多普勒轨道成像使用传输信号中的多普勒频移来确定卫星的轨道参数,包括距离和距离速率(或径向速度)。我们描述了两种用于距离速率的大气限制光学多普勒轨道成像测量的技术。不稳定的技术直接从返回的光信号的外差测量中确定多普勒频移。稳定技术旨在通过抑制压印在传输光信号上的大气相位噪声来提高第一个的精度。我们在 2.2km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \ usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.2\, \hbox {km}$$\end{document} 水平链接,在远端具有模拟的在线速度多普勒频移。据估计,这种长度的水平连接几乎是与空间垂直连接的总综合大气湍流的一半。在没有稳定大气效应的情况下,我们获得了 17μms-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy } \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$17\,{\upmu }\hbox {m}\, \hbox {s}^{-1}$$\end{document} at 1s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{ amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\,\hbox {s}$$\end{document} 的整合。通过主动抑制大气相位噪声,这提高了三个数量级,达到 9.0nms-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9.0\,\hbox {nm}\, \hbox {s}$$\end{document}。这代表了在同一集成时间的距离速率精度方面,比操作地对空 X 波段系统的典型性能提高了四个数量级。该系统的性能是相干光学多普勒轨道成像概念的有希望的证明。从地面到太空执行这些技术还存在许多其他挑战,这些挑战在此处介绍的初步实验中没有得到解决。未来,我们的目标是朝着 10km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \ usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10\,
更新日期:2020-06-01
down
wechat
bug