当前位置: X-MOL 学术J. Phys. B: At. Mol. Opt. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulating gravity-assisted loading of laser-cooled atoms into a hollow-core photonic-bandgap fiber
Journal of Physics B: Atomic, Molecular and Optical Physics ( IF 1.5 ) Pub Date : 2020-06-03 , DOI: 10.1088/1361-6455/ab8946
Taehyun Yoon , Michal Bajcsy

We numerically simulate gravity-assisted loading of laser-cooled atoms into a hollow-core fiber. For this, we compute the trajectories of falling atoms and test the success or failure of loading with a range of atoms’ initial positions and velocities. By overlapping these results with the position and velocity distribution of the trapped atomic cloud, the number of loaded atoms is estimated without a random sampling process. We present our predictions for the atomic cloud’s loading efficiency into a photonic-bandgap fiber with a 7.5 μ m-diameter hollow core for various experimental conditions, such as the initial temperature, the cloud position and size, and the dipole trap power, and compare the predictions to experimental data. Our approach reduces the computational resources and time compared to the Monte-Carlo approach used in previously reported works.

中文翻译:

模拟重力辅助将激光冷却的原子加载到空心光子带隙光纤中

我们在数值上模拟了激光冷却的原子在空心纤维中的重力辅助加载。为此,我们计算了下降的原子的轨迹,并测试了一系列原子的初始位置和速度的加载成功与否。通过将这些结果与所捕获的原子云的位置和速度分布相重叠,无需随机采样过程即可估计加载的原子数。我们针对各种实验条件(例如初始温度,云的位置和大小以及偶极子捕获功率)对原子云加载到直径为7.5μm的空心光子带隙光纤中的负载效率进行了预测,并进行了比较对实验数据的预测。
更新日期:2020-06-03
down
wechat
bug