当前位置: X-MOL 学术Genes Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation.
Genes & Development ( IF 7.5 ) Pub Date : 2020-07-01 , DOI: 10.1101/gad.335794.119
Hyeseon Kang 1 , Maxim N Shokhirev 2 , Zhichao Xu 3 , Sahaana Chandran 3 , Jesse R Dixon 3 , Martin W Hetzer 1
Affiliation  

During mitosis, transcription of genomic DNA is dramatically reduced, before it is reactivated during nuclear reformation in anaphase/telophase. Many aspects of the underlying principles that mediate transcriptional memory and reactivation in the daughter cells remain unclear. Here, we used ChIP-seq on synchronized cells at different stages after mitosis to generate genome-wide maps of histone modifications. Combined with EU-RNA-seq and Hi-C analyses, we found that during prometaphase, promoters, enhancers, and insulators retain H3K4me3 and H3K4me1, while losing H3K27ac. Enhancers globally retaining mitotic H3K4me1 or locally retaining mitotic H3K27ac are associated with cell type-specific genes and their transcription factors for rapid transcriptional activation. As cells exit mitosis, promoters regain H3K27ac, which correlates with transcriptional reactivation. Insulators also gain H3K27ac and CCCTC-binding factor (CTCF) in anaphase/telophase. This increase of H3K27ac in anaphase/telophase is required for posttranscriptional activation and may play a role in the establishment of topologically associating domains (TADs). Together, our results suggest that the genome is reorganized in a sequential order, in which histone methylations occur first in prometaphase, histone acetylation, and CTCF in anaphase/telophase, transcription in cytokinesis, and long-range chromatin interactions in early G1. We thus provide insights into the histone modification landscape that allows faithful reestablishment of the transcriptional program and TADs during cell division.

中文翻译:

有丝分裂后转录再激活过程中组蛋白修饰和远程染色体相互作用的动态调节。

在有丝分裂期间,基因组 DNA 的转录显着减少,然后在后期/末期的核重组期间重新激活。介导子细胞转录记忆和再激活的基本原理的许多方面仍不清楚。在这里,我们在有丝分裂后不同阶段的同步细胞上使用 ChIP-seq 来生成组蛋白修饰的全基因组图谱。结合 EU-RNA-seq 和 Hi-C 分析,我们发现在前中期,启动子、增强子和绝缘子保留 H3K4me3 和 H3K4me1,同时丢失 H3K27ac。全局保留有丝分裂 H3K4me1 或局部保留有丝分裂 H3K27ac 的增强子与细胞类型特异性基因及其转录因子相关,用于快速转录激活。随着细胞退出有丝分裂,启动子重新获得 H3K27ac,这与转录再激活相关。绝缘体还在后期/末期获得 H3K27ac 和 CCCTC 结合因子 (CTCF)。H3K27ac 在后期/末期的这种增加是转录后激活所必需的,并且可能在拓扑关联域 (TAD) 的建立中发挥作用。总之,我们的结果表明基因组按顺序重组,其中组蛋白甲基化首先发生在前中期,组蛋白乙酰化和 CTCF 发生在后期/末期,转录发生在胞质分裂中,长程染色质相互作用发生在早期 G1 期。因此,我们提供了对组蛋白修饰景观的见解,它允许在细胞分裂期间忠实地重建转录程序和 TAD。H3K27ac 在后期/末期的这种增加是转录后激活所必需的,并且可能在拓扑关联域 (TAD) 的建立中发挥作用。总之,我们的结果表明基因组按顺序重组,其中组蛋白甲基化首先发生在前中期,组蛋白乙酰化和 CTCF 发生在后期/末期,转录发生在胞质分裂中,长程染色质相互作用发生在早期 G1 期。因此,我们提供了对组蛋白修饰景观的见解,它允许在细胞分裂期间忠实地重建转录程序和 TAD。H3K27ac 在后期/末期的这种增加是转录后激活所必需的,并且可能在拓扑关联域 (TAD) 的建立中发挥作用。总之,我们的结果表明基因组按顺序重组,其中组蛋白甲基化首先发生在前中期,组蛋白乙酰化和 CTCF 发生在后期/末期,转录发生在胞质分裂中,长程染色质相互作用发生在早期 G1 期。因此,我们提供了对组蛋白修饰景观的见解,它允许在细胞分裂期间忠实地重建转录程序和 TAD。我们的结果表明基因组按顺序重组,其中组蛋白甲基化首先发生在前中期,组蛋白乙酰化和 CTCF 发生在后期/末期,转录发生在胞质分裂,长程染色质相互作用发生在早期 G1。因此,我们提供了对组蛋白修饰景观的见解,它允许在细胞分裂期间忠实地重建转录程序和 TAD。我们的结果表明基因组按顺序重组,其中组蛋白甲基化首先发生在前中期,组蛋白乙酰化和 CTCF 发生在后期/末期,转录发生在胞质分裂,长程染色质相互作用发生在早期 G1。因此,我们提供了对组蛋白修饰景观的见解,它允许在细胞分裂期间忠实地重建转录程序和 TAD。
更新日期:2020-07-01
down
wechat
bug