当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor.
Light: Science & Applications ( IF 20.6 ) Pub Date : 2020-06-04 , DOI: 10.1038/s41377-020-0321-0
Amin Soltani 1 , Frederik Kuschewski 2 , Marlene Bonmann 3 , Andrey Generalov 3, 4 , Andrei Vorobiev 3 , Florian Ludwig 1 , Matthias M Wiecha 1 , Dovilė Čibiraitė 1 , Frederik Walla 1 , Stephan Winnerl 5 , Susanne C Kehr 2 , Lukas M Eng 2, 6 , Jan Stake 3 , Hartmut G Roskos 1
Affiliation  

Plasma waves play an important role in many solid-state phenomena and devices. They also become significant in electronic device structures as the operation frequencies of these devices increase. A prominent example is field-effect transistors (FETs), that witness increased attention for application as rectifying detectors and mixers of electromagnetic waves at gigahertz and terahertz frequencies, where they exhibit very good sensitivity even high above the cut-off frequency defined by the carrier transit time. Transport theory predicts that the coupling of radiation at THz frequencies into the channel of an antenna-coupled FET leads to the development of a gated plasma wave, collectively involving the charge carriers of both the two-dimensional electron gas and the gate electrode. In this paper, we present the first direct visualization of these waves. Employing graphene FETs containing a buried gate electrode, we utilize near-field THz nanoscopy at room temperature to directly probe the envelope function of the electric field amplitude on the exposed graphene sheet and the neighboring antenna regions. Mapping of the field distribution documents that wave injection is unidirectional from the source side since the oscillating electrical potentials on the gate and drain are equalized by capacitive shunting. The plasma waves, excited at 2 THz, are overdamped, and their decay time lies in the range of 25–70 fs. Despite this short decay time, the decay length is rather long, i.e., 0.3-0.5 μm, because of the rather large propagation speed of the plasma waves, which is found to lie in the range of 3.5–7 × 106 m/s, in good agreement with theory. The propagation speed depends only weakly on the gate voltage swing and is consistent with the theoretically predicted \(\frac{1}{4}\) power law.



中文翻译:

在石墨烯场效应晶体管的沟道中对等离子体波进行直接的纳米观察。

等离子体波在许多固态现象和设备中起着重要作用。随着这些设备的工作频率增加,它们在电子设备结构中也变得很重要。场效应晶体管(FET)是一个著名的例子,它在以兆赫兹和太赫兹频率为整流器和电磁波混频器时得到了越来越多的关注,它们甚至在高于载波定义的截止频率时也表现出很高的灵敏度。运输时间。传输理论预测,在THz频率处的辐射耦合到天线耦合FET的通道中会导致产生门控等离子体波,该等离子体波共同涉及二维电子气和栅电极的电荷载流子。在本文中,我们展示了这些波的第一个直接可视化。我们使用包含掩埋栅电极的石墨烯FET,在室温下利用近场THz纳米技术来直接探测裸露的石墨烯片和相邻天线区域上电场幅度的包络函数。场分布图的映射表明,波注入是从源极侧单向进行的,因为栅极和漏极上的振荡电势通过电容分流来均衡。以2 THz激发的等离子波被过度阻尼,其衰减时间在25–70 fs的范围内。尽管衰减时间很短,但是衰减长度还是相当长,即0.3-0.5μm,这是因为等离子波的传播速度相当大,发现其范围在3.5–7×10 我们使用包含掩埋栅电极的石墨烯FET,在室温下利用近场THz纳米技术来直接探测裸露的石墨烯片和相邻天线区域上电场幅度的包络函数。场分布图的映射表明,波注入是从源极侧单向进行的,因为栅极和漏极上的振荡电势通过电容分流来均衡。以2 THz激发的等离子波被过度阻尼,其衰减时间在25–70 fs的范围内。尽管衰减时间很短,但是衰减长度还是相当长,即0.3-0.5μm,这是因为等离子波的传播速度相当大,发现其范围在3.5–7×10 利用包含掩埋栅电极的石墨烯FET,我们在室温下利用近场THz纳米技术来直接探测裸露的石墨烯片和相邻天线区域上电场幅度的包络函数。场分布图的映射表明,波注入是从源极侧单向进行的,因为栅极和漏极上的振荡电势通过电容分流来均衡。以2 THz激发的等离子波被过度阻尼,其衰减时间在25–70 fs的范围内。尽管衰减时间很短,但是衰减长度还是相当长,即0.3-0.5μm,这是因为等离子波的传播速度相当大,发现其范围在3.5–7×10 我们利用室温下的近场太赫兹纳米技术直接探测裸露的石墨烯片和邻近天线区域的电场幅度的包络函数。场分布图表明,由于源极和栅极上的振荡电势通过电容分流来均衡,因此波注入从源极侧是单向的。以2 THz激发的等离子波被过度阻尼,其衰减时间在25–70 fs的范围内。尽管衰减时间很短,但是衰减长度还是相当长,即0.3-0.5μm,这是因为等离子波的传播速度相当大,发现其范围在3.5–7×10 我们利用室温下的近场太赫兹纳米技术直接探测裸露的石墨烯片和邻近天线区域的电场幅度的包络函数。场分布图的映射表明,波注入是从源极侧单向进行的,因为栅极和漏极上的振荡电势通过电容分流来均衡。以2 THz激发的等离子波被过度阻尼,其衰减时间在25–70 fs的范围内。尽管衰减时间很短,但是衰减长度还是相当长,即0.3-0.5μm,这是因为等离子波的传播速度相当大,发现其范围在3.5–7×10 场分布图的映射表明,波注入是从源极侧单向进行的,因为栅极和漏极上的振荡电势通过电容分流来均衡。以2 THz激发的等离子波被过度阻尼,其衰减时间在25–70 fs的范围内。尽管衰减时间很短,但是衰减长度还是相当长,即0.3-0.5μm,这是因为等离子波的传播速度相当大,发现其范围在3.5–7×10 场分布图的映射表明,波注入是从源极侧单向进行的,因为栅极和漏极上的振荡电势通过电容分流来均衡。以2 THz激发的等离子波被过度阻尼,其衰减时间在25–70 fs的范围内。尽管衰减时间很短,但是衰减长度还是相当长,即0.3-0.5μm,这是因为等离子波的传播速度相当大,发现其范围在3.5–7×106  m / s,与理论高度吻合。传播速度仅微弱地取决于栅极电压摆幅,并且与理论上预测的\(\ frac {1} {4} \)功率定律一致。

更新日期:2020-06-04
down
wechat
bug