当前位置: X-MOL 学术Processes › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deposition of Boron-Doped Thin CVD Diamond Films from Methane-Triethyl Borate-Hydrogen Gas Mixture
Processes ( IF 2.8 ) Pub Date : 2020-06-04 , DOI: 10.3390/pr8060666
Nikolay Ivanovich Polushin , Alexander Ivanovich Laptev , Boris Vladimirovich Spitsyn , Alexander Evgenievich Alexenko , Alexander Mihailovich Polyansky , Anatoly Lvovich Maslov , Tatiana Vladimirovna Martynova

Boron-doped diamond is a promising semiconductor material that can be used as a sensor and in power electronics. Currently, researchers have obtained thin boron-doped diamond layers due to low film growth rates (2–10 μm/h), with polycrystalline diamond growth on the front and edge planes of thicker crystals, inhomogeneous properties in the growing crystal’s volume, and the presence of different structural defects. One way to reduce structural imperfection is the specification of optimal synthesis conditions, as well as surface etching, to remove diamond polycrystals. Etching can be carried out using various gas compositions, but this operation is conducted with the interruption of the diamond deposition process; therefore, inhomogeneity in the diamond structure appears. The solution to this problem is etching in the process of diamond deposition. To realize this in the present work, we used triethyl borate as a boron-containing substance in the process of boron-doped diamond chemical vapor deposition. Due to the oxygen atoms in the triethyl borate molecule, it became possible to carry out an experiment on simultaneous boron-doped diamond deposition and growing surface etching without the requirement of process interruption for other operations. As a result of the experiments, we obtain highly boron-doped monocrystalline diamond layers with a thickness of about 8 μm and a boron content of 2.9%. Defects in the form of diamond polycrystals were not detected on the surface and around the periphery of the plate.

中文翻译:

从甲烷-硼酸三乙酯-氢气体混合物中沉积硼掺杂的CVD金刚石薄膜

掺硼金刚石是一种很有前途的半导体材料,可以用作传感器和电力电子设备。目前,由于薄膜生长速率低(2–10μm/ h),多晶金刚石在较厚晶体的正面和边缘平面上生长,生长晶体的体积不均一,以及晶体的生长,研究人员已经获得了掺硼的金刚石薄层。存在不同的结构缺陷。减少结构缺陷的一种方法是指定最佳合成条件,以及进行表面蚀刻以去除金刚石多晶。蚀刻可以使用各种气体成分进行,但是该操作是在金刚石沉积过程中断的情况下进行的。因此,金刚石结构出现不均匀性。解决该问题的方法是在金刚石沉积过程中进行蚀刻。为了在当前工作中实现这一目标,我们在掺硼金刚石化学气相沉积过程中使用了硼酸三乙酯作为含硼物质。由于硼酸三乙酯分子中的氧原子,可以同时进行掺硼金刚石沉积和生长表面蚀刻的实验,而无需中断其他操作。实验的结果是,我们获得了厚度约为8μm,硼含量为2.9%的高硼掺杂单晶金刚石层。在板的表面和周围没有检测到金刚石多晶形式的缺陷。由于硼酸三乙酯分子中的氧原子,可以同时进行掺硼金刚石沉积和生长表面蚀刻的实验,而无需中断其他操作。实验的结果是,我们获得了厚度约为8μm,硼含量为2.9%的高硼掺杂单晶金刚石层。在板的表面和周围没有检测到金刚石多晶形式的缺陷。由于硼酸三乙酯分子中的氧原子,可以同时进行掺硼金刚石沉积和生长表面蚀刻的实验,而无需中断其他操作。实验的结果是,我们获得了厚度约为8μm,硼含量为2.9%的高硼掺杂单晶金刚石层。在板的表面和周围没有检测到金刚石多晶形式的缺陷。我们获得了高度硼掺杂的单晶金刚石层,其厚度约为8μm,硼含量为2.9%。在板的表面和周围没有检测到金刚石多晶形式的缺陷。我们获得了高度硼掺杂的单晶金刚石层,其厚度约为8μm,硼含量为2.9%。在板的表面和周围没有检测到金刚石多晶形式的缺陷。
更新日期:2020-06-04
down
wechat
bug