当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part D J. Automob. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A state observation and torque compensation–based acceleration slip regulation control approach for a four-wheel independent drive electric vehicle under slope driving
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ( IF 1.5 ) Pub Date : 2020-06-03 , DOI: 10.1177/0954407020917013
Luole Guo 1 , Hongbing Xu 1 , Jianxiao Zou 1 , Hongyu Jie 1 , Gang Zheng 1
Affiliation  

Wheel slipping of four-wheel independent drive electric vehicle on slope will reduce vehicle controllability and driving stability, thereby reducing vehicle safety. In order to solve the problem of wheel slipping and optimize the speed control performance of four-wheel independent drive electric vehicle on slope, an acceleration slip regulation control strategy of slope drive is proposed in this paper. First, we design a road identification algorithm to identify the current road conditions of the four-wheel independent drive electric vehicle, and calculate the optimal slip ratio of the current road surface by curve fitting method. Then, with the optimal slip ratio as the control objective, the acceleration slip regulation control strategy is designed to maximize the utilization of wheel adhesion coefficient to prevent wheel slip. Third, a slope identification algorithm based on Luenberger state observer is designed to identify the various slopes of the uphill and downhill road, after which a torque compensation algorithm is designed according to the identification slope, to compensate for the longitudinal component of vehicle gravity at different slopes. Fourth, a slope torque distribution algorithm is proposed based on acceleration slip regulation and slope identification. Finally, through the joint simulation platform of MATLAB/Simulink and CarSim, it is shown that the proposed control strategy can better restrain wheel slipping on the uphill and downhill road, and has better dynamic characteristics and stability.

中文翻译:

基于状态观测和转矩补偿的四轮独立驱动电动汽车斜坡行驶加速滑移调节控制方法

四轮独立驱动电动车在斜坡上打滑会降低车辆的可控性和行驶稳定性,从而降低车辆的安全性。为解决车轮打滑问题,优化四轮独立驱动电动汽车在斜坡上的速度控制性能,提出了一种斜坡驱动的加速打滑调节控制策略。首先,我们设计了一种道路识别算法来识别四轮独立驱动电动汽车当前的路况,并通过曲线拟合的方法计算当前路面的最佳滑移率。然后,以最优滑移率为控制目标,设计加速滑移调节控制策略,最大限度地利用车轮附着系数来防止车轮打滑。第三,设计了一种基于Luenberger状态观测器的坡度识别算法来识别上坡和下坡道路的各种坡度,然后根据识别坡度设计扭矩补偿算法,以补偿不同坡度下车辆重力的纵向分量。第四,提出了一种基于加速度滑移调节和斜坡识别的斜坡转矩分配算法。最后,通过MATLAB/Simulink和CarSim联合仿真平台表明,所提出的控制策略能够更好地抑制车轮在上坡和下坡道路上的打滑,具有较好的动态特性和稳定性。然后根据识别坡度设计转矩补偿算法,对不同坡度下车辆重力的纵向分量进行补偿。第四,提出了一种基于加速度滑移调节和斜坡识别的斜坡转矩分配算法。最后,通过MATLAB/Simulink和CarSim联合仿真平台表明,所提出的控制策略能够更好地抑制车轮在上坡和下坡道路上的打滑,具有较好的动态特性和稳定性。然后根据识别坡度设计转矩补偿算法,对不同坡度下车辆重力的纵向分量进行补偿。第四,提出了一种基于加速度滑移调节和斜坡识别的斜坡转矩分配算法。最后,通过MATLAB/Simulink和CarSim的联合仿真平台,表明所提出的控制策略能够更好地抑制车轮在上坡和下坡道路上的打滑,具有较好的动态特性和稳定性。
更新日期:2020-06-03
down
wechat
bug