当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Critical Pressure Asymmetry in the Enclosed Fluid Diode.
Langmuir ( IF 3.7 ) Pub Date : 2020-06-02 , DOI: 10.1021/acs.langmuir.0c01039
Jack R Panter 1 , Yonas Gizaw 2 , Halim Kusumaatmaja 1
Affiliation  

Joint physically and chemically pattered surfaces can provide efficient and passive manipulation of fluid flow. The ability of many of these surfaces to allow only unidirectional flow means they are often termed fluid diodes. Synthetic analogues of these are enabling technologies from sustainable water collection via fog harvesting to improved wound dressings. One key fluid diode geometry features a pore sandwiched between two absorbent substrates—an important design for applications that require liquid capture while preventing back-flow. However, the enclosed pore is particularly challenging to design as an effective fluid diode due to the need for both a low Laplace pressure for liquid entering the pore and a high Laplace pressure to liquid leaving. Here, we calculate the Laplace pressure for fluid traveling in both directions on a range of conical pore designs with a chemical gradient. We show that this chemical gradient is in general required to achieve the largest critical pressure differences between incoming and outgoing liquids. Finally, we discuss the optimization strategy to maximize this critical pressure asymmetry.

中文翻译:

封闭式流体二极管中的临界压力不对称。

联合的物理和化学图案表面可以提供对流体流的有效和被动控制。这些表面中的许多表面仅允许单向流动的能力意味着它们通常被称为流体二极管。它们的合成类似物使技术成为可能,包括通过雾气收集实现可持续的水收集,以及改善伤口敷料。一种重要的流体二极管几何形状具有一个夹在两个吸收性基材之间的孔-对于需要液体收集同时防止回流的应用而言,这是一项重要设计。然而,由于既需要用于进入孔的液体的低拉普拉斯压力又需要用于离开液体的高的拉普拉斯压力,因此将封闭的孔设计成有效的流体二极管特别具有挑战性。这里,我们在具有化学梯度的一系列锥形孔设计中计算了双向流动的流体的拉普拉斯压力。我们表明,通常需要此化学梯度来实现流入和流出液体之间的最大临界压力差。最后,我们讨论了使该临界压力不对称最大化的优化策略。
更新日期:2020-07-07
down
wechat
bug