Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation study of energy resolution of the high-pressure xenon gamma-ray spectrometer
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment ( IF 1.5 ) Pub Date : 2020-06-03 , DOI: 10.1016/j.nima.2020.164216
Jinchao Ma , Pin Gong , Xiaobin Tang , Peng Wang , Wen Yan , Dajian Liang , Zeyu Wang , Rui Zhang , Xiaolei Shen

High-pressure xenon (HPXe) ionization chamber is a high-energy-resolution radiation detector for gamma spectrometry with excellent physical properties. It has a wide range of operation temperatures, excellent radiation resistance, and long-life performance. Energy resolution is an important parameter of an HPXe gamma-ray spectrometer and has been investigated by scientists through experimental methods for years. However, in previous researches, there are few simulations on energy resolution of different ionization chamber structures. In this paper, three simulation tools are used to simulate the energy resolution of the HPXe spectrometer. Monte Carlo simulation software PHITS and finite element analysis software ANSYS are used to establish the model of the HPXe ionization chamber with a shielding grid. Garfield++ is adopted to obtain the output signal for analyzing the energy resolution. The energy resolution under different gas components and shielding grid structures are simulated. Results show that when the gamma-ray energy is 662 keV, the deviation between the simulated energy resolution obtained in this paper and the expected theoretical value 0.6% reported in the document Dmitrenko et al. (1986) is 13.05%. Besides, the experimental energy resolution of the HPXe gamma-ray spectrometer made by MEPHI (Dmitrenko et al., 2008) is about 2% at 662keV. Therefore, the value of simulated result in this paper is between the experimental result of MEPHI and the theoretical value, and closer to the theoretical value, which means that the simulation method proposed in this paper has high credibility.



中文翻译:

高压氙伽马能谱仪能量分辨率的模拟研究

高压氙(HPXe)电离室是用于伽玛光谱的高能量分辨率辐射检测器,具有出色的物理性能。它具有广泛的工作温度范围,出色的抗辐射性和长寿命性能。能量分辨率是HPXe伽马射线能谱仪的重要参数,多年来,科学家已通过实验方法对其进行了研究。然而,在先前的研究中,很少有关于不同电离室结构的能量分辨率的模拟。在本文中,使用了三种仿真工具来仿真HPXe光谱仪的能量分辨率。蒙特卡罗仿真软件PHITS和有限元分析软件ANSYS用于建立带有屏蔽网格的HPXe电离室的模型。采用Garfield ++采集输出信号,分析能量分辨率。模拟了不同气体组分和屏蔽网格结构下的能量分辨率。结果表明,当伽马射线能量为662 keV时,本文获得的模拟能量分辨率与Dmitrenko等人报告的理论期望值0.6%之间存在偏差。(1986)是13.05%。此外,由MEPHI制造的HPXe伽马能谱仪的实验能量分辨率(Dmitrenko等,2008)在662keV时约为2%。因此,本文的仿真结果的值介于MEPHI的实验结果与理论值之间,并且接近理论值,这意味着本文提出的仿真方法具有较高的可信度。模拟了不同气体组分和屏蔽网格结构下的能量分辨率。结果表明,当伽马射线能量为662 keV时,本文获得的模拟能量分辨率与Dmitrenko等人报告的理论期望值0.6%之间存在偏差。(1986)是13.05%。此外,由MEPHI制造的HPXe伽马能谱仪的实验能量分辨率(Dmitrenko等,2008)在662keV时约为2%。因此,本文的仿真结果的值介于MEPHI的实验结果与理论值之间,并且接近理论值,这意味着本文提出的仿真方法具有较高的可信度。模拟了不同气体组分和屏蔽网格结构下的能量分辨率。结果表明,当伽马射线能量为662 keV时,本文获得的模拟能量分辨率与Dmitrenko等人报告的理论期望值0.6%之间存在偏差。(1986)是13.05%。此外,由MEPHI制造的HPXe伽马能谱仪的实验能量分辨率(Dmitrenko等,2008)在662keV时约为2%。因此,本文的仿真结果的值介于MEPHI的实验结果与理论值之间,并且接近理论值,这意味着本文提出的仿真方法具有较高的可信度。本文获得的模拟能量分辨率与Dmitrenko等人文件中报道的预期理论值0.6%之间的偏差。(1986)是13.05%。此外,由MEPHI制造的HPXe伽马能谱仪的实验能量分辨率(Dmitrenko等,2008)在662keV时约为2%。因此,本文的仿真结果的值介于MEPHI的实验结果与理论值之间,并且接近理论值,这意味着本文提出的仿真方法具有较高的可信度。本文获得的模拟能量分辨率与Dmitrenko等人文件中报道的预期理论值0.6%之间的偏差。(1986)是13.05%。此外,由MEPHI制造的HPXe伽马能谱仪的实验能量分辨率(Dmitrenko等,2008)在662keV时约为2%。因此,本文的仿真结果的值介于MEPHI的实验结果与理论值之间,并且接近理论值,这意味着本文提出的仿真方法具有较高的可信度。2008)在662keV时约为2%。因此,本文的仿真结果的值介于MEPHI的实验结果与理论值之间,并且接近理论值,这意味着本文提出的仿真方法具有较高的可信度。2008)在662keV时约为2%。因此,本文的仿真结果的值介于MEPHI的实验结果与理论值之间,并且接近理论值,这意味着本文提出的仿真方法具有较高的可信度。

更新日期:2020-06-03
down
wechat
bug