当前位置: X-MOL 学术J. Ind. Eng. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of ammonium perchlorate particles based on a population balance equation model in Taylor-Couette flow
Journal of Industrial and Engineering Chemistry ( IF 5.9 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.jiec.2020.05.024
Sung-Ho Yoon , Jang Gyun Lim , Jongpal Hong , Sang-Keun Han , Moon Ki Kim , Jae-Boong Choi , Tae-Rin Lee

Abstract Taylor-Couette flow, multiple vortex rings, is developed by rotating a co-axial rod in a cylindrical reactor. It is helpful in applying stable shear forces to suspended particles in the fluid domain. Recently, by using the Taylor-Couette flow, various experiments were performed to prepare micro-size particles at the laboratory level. However, unlike the simple concept of particle preparation by the Taylor-Couette flow, it is challenging to predict particle size distributions in the fluid domain, especially in the scale-up issue of a Taylor-Couette reactor. In this reason, computational methods are required to calculate particle growth in fluid flow. In this paper, ammonium perchlorate particles in the Taylor-Couette flow are simulated by using a population balance equation model, connected to a module of computational fluid dynamics. First of all, physical and empirical parameters for the population balance equation are determined by using experimental data in a Taylor-Couette flow reactor. Secondly, particle size distributions in a scale-up reactor are predicted by using the proposed method. Finally, validity and applicability of the suggested method are fully discussed on the basis of simulation results. As a major result, the simulation model for ammonium perchlorate particles was reliable in predicting their sizes along time. In addition, without changing the model parameters, the simulation results matched well with the experiments in the scale-up reactor. Based on the simulation results, it is expected that the suggested method can be utilized to estimate particle size distributions in various boundary and operating conditions.

中文翻译:

基于Taylor-Couette流中种群平衡方程模型的高氯酸铵颗粒数值模拟

摘要 Taylor-Couette 流,多个涡环,是通过在圆柱形反应器中旋转同轴杆而形成的。它有助于对流体域中的悬浮颗粒施加稳定的剪切力。最近,通过使用 Taylor-Couette 流,进行了各种实验以在实验室级别制备微尺寸颗粒。然而,与通过 Taylor-Couette 流制备颗粒的简单概念不同,预测流体域中的颗粒尺寸分布具有挑战性,尤其是在 Taylor-Couette 反应器的放大问题中。因此,需要计算方法来计算流体流动中的粒子生长。在本文中,Taylor-Couette 流中的高氯酸铵颗粒通过使用人口平衡方程模型进行模拟,连接到计算流体动力学模块。首先,人口平衡方程的物理和经验参数是通过使用 Taylor-Couette 流动反应器中的实验数据确定的。其次,通过使用所提出的方法预测放大反应器中的粒度分布。最后,在仿真结果的基础上充分讨论了所提出方法的有效性和适用性。作为一个主要结果,高氯酸铵颗粒的模拟模型在预测它们随时间变化的尺寸方面是可靠的。此外,在不改变模型参数的情况下,模拟结果与放大反应器中的实验吻合良好。基于模拟结果,预计所建议的方法可用于估计各种边界和操作条件下的粒度分布。总体平衡方程的物理和经验参数是通过使用 Taylor-Couette 流动反应器中的实验数据确定的。其次,通过使用所提出的方法预测放大反应器中的粒度分布。最后,在仿真结果的基础上充分讨论了所提出方法的有效性和适用性。作为一个主要结果,高氯酸铵颗粒的模拟模型在预测它们随时间变化的尺寸方面是可靠的。此外,在不改变模型参数的情况下,模拟结果与放大反应器中的实验吻合良好。基于模拟结果,预计所建议的方法可用于估计各种边界和操作条件下的粒度分布。总体平衡方程的物理和经验参数是通过使用 Taylor-Couette 流动反应器中的实验数据确定的。其次,通过使用所提出的方法预测放大反应器中的粒度分布。最后,在仿真结果的基础上充分讨论了所提出方法的有效性和适用性。作为一个主要结果,高氯酸铵颗粒的模拟模型在预测它们随时间变化的尺寸方面是可靠的。此外,在不改变模型参数的情况下,模拟结果与放大反应器中的实验吻合良好。基于模拟结果,预计所建议的方法可用于估计各种边界和操作条件下的粒度分布。
更新日期:2020-09-01
down
wechat
bug