当前位置: X-MOL 学术Biosyst. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Managing soil compaction – A choice of low-mass autonomous vehicles or controlled traffic?
Biosystems Engineering ( IF 4.4 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.biosystemseng.2020.05.006
John E. McPhee , Diogenes L. Antille , Jeff N. Tullberg , Richard B. Doyle , Mark Boersma

Compaction-induced soil degradation is of growing importance as field machinery continues to increase in power and mass. Approaches to managing the impacts of soil compaction include minimisation (reduce load), remediation (tillage) and confinement (control traffic). Integrated ‘swarms’ of low-mass autonomous machinery have recently been suggested as a means of reducing compaction and an alternative to controlled traffic. In this study, combine and potato harvester machinery relationships were used to predict the specifications of potential low-mass harvesters for use in soil compaction modelling. Results suggested that combine harvester gross vehicle mass (GVM) must be less than 6 Mg to keep the modelled soil bulk density below 1.4 Mg m-3. With this constraint, 6-9 small harvesters (~50 kW) would be required to replace one Class 9 (>300 kW) harvester. A fleet of this size would require access to unloading facilities every 2.5-3 min for the modelled yield conditions. For root and tuber harvesting, which results in a high degree of soil disturbance, no low-mass harvester option was found that would avoid compacting the soil to unacceptable limits. Avoiding soil compaction while maintaining acceptable productivity will pose considerable design and logistics challenges for low-mass grain, root and tuber vegetable harvest machinery. The integration of controlled traffic farming (CTF) and medium-capacity autonomous machines (~10-20 Mg GVM for combine harvesters) may be a better solution for both soil compaction and operational logistics than low-mass swarm technology.

中文翻译:

管理土壤压实——是选择低质量自动驾驶汽车还是受控交通?

随着田间机械的功率和质量不断增加,压实引起的土壤退化变得越来越重要。管理土壤压实影响的方法包括最小化(减少负荷)、修复(耕作)和限制(控制交通)。最近有人建议将低质量自主机械的集成“群”作为减少压实和控制交通的替代方法。在这项研究中,联合收割机和马铃薯收割机机械关系用于预测用于土壤压实建模的潜在低质量收割机的规格。结果表明,联合收割机车辆总质量 (GVM) 必须小于 6 Mg,以保持模拟土壤容重低于 1.4 Mg m-3。在此限制下,需要 6-9 台小型收割机 (~50 kW) 来替换一台 9 类 (> 300 kW) 收割机。对于模拟屈服条件,这种规模的车队需要每 2.5-3 分钟进入一次卸货设施。对于根和块茎收获,这会导致高度的土壤扰动,没有找到可以避免将土壤压实到不可接受的限度的低质量收获机选项。在保持可接受的生产力的同时避免土壤压实将为低质量谷物、块根和块茎蔬菜收获机械带来相当大的设计和物流挑战。与低质量群技术相比,受控交通农业 (CTF) 和中等容量自主机器(联合收割机的~10-20 Mg GVM)的集成可能是土壤压实和运营物流的更好解决方案。5-3 分钟用于模拟屈服条件。对于根和块茎收获,这会导致高度的土壤扰动,没有找到可以避免将土壤压实到不可接受的限度的低质量收获机选项。在保持可接受的生产力的同时避免土壤压实将为低质量谷物、块根和块茎蔬菜收获机械带来相当大的设计和物流挑战。与低质量群技术相比,受控交通农业 (CTF) 和中等容量自主机器(联合收割机的~10-20 Mg GVM)的集成可能是土壤压实和运营物流的更好解决方案。5-3 分钟用于模拟屈服条件。对于根和块茎收获,这会导致高度的土壤扰动,没有找到可以避免将土壤压实到不可接受的限度的低质量收获机选项。在保持可接受的生产力的同时避免土壤压实将为低质量谷物、块根和块茎蔬菜收获机械带来相当大的设计和物流挑战。与低质量群技术相比,受控交通农业 (CTF) 和中等容量自主机器(联合收割机的~10-20 Mg GVM)的集成可能是土壤压实和运营物流的更好解决方案。在保持可接受的生产力的同时避免土壤压实将为低质量谷物、块根和块茎蔬菜收获机械带来相当大的设计和物流挑战。与低质量群技术相比,受控交通农业 (CTF) 和中等容量自主机器(联合收割机的~10-20 Mg GVM)的集成可能是土壤压实和运营物流的更好解决方案。在保持可接受的生产力的同时避免土壤压实将为低质量谷物、块根和块茎蔬菜收获机械带来相当大的设计和物流挑战。与低质量群技术相比,受控交通农业 (CTF) 和中等容量自主机器(联合收割机的~10-20 Mg GVM)的集成可能是土壤压实和运营物流的更好解决方案。
更新日期:2020-07-01
down
wechat
bug