当前位置: X-MOL 学术Microb. Cell Fact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of hydrogenobyrinic acid biosynthesis in Escherichia coli using multi-level metabolic engineering strategies.
Microbial Cell Factories ( IF 4.3 ) Pub Date : 2020-06-01 , DOI: 10.1186/s12934-020-01377-2
Pingtao Jiang 1, 2 , Huan Fang 2, 3 , Jing Zhao 2, 4 , Huina Dong 2 , Zhaoxia Jin 1 , Dawei Zhang 2, 3, 4
Affiliation  

Hydrogenobyrinic acid is a key intermediate of the de-novo aerobic biosynthesis pathway of vitamin B12. The introduction of a heterologous de novo vitamin B12 biosynthesis pathway in Escherichia coli offers an alternative approach for its production. Although E. coli avoids major limitations that currently faced by industrial producers of vitamin B12, such as long growth cycles, the insufficient supply of hydrogenobyrinic acid restricts industrial vitamin B12 production. By designing combinatorial ribosomal binding site libraries of the hemABCD genes in vivo, we found that their optimal relative translational initiation rates are 10:1:1:5. The transcriptional coordination of the uroporphyrinogen III biosynthetic module was realized by promoter engineering of the hemABCD operon. Knockdown of competitive heme and siroheme biosynthesis pathways by RBS engineering enhanced the hydrogenobyrinic acid titer to 20.54 and 15.85 mg L−1, respectively. Combined fine-tuning of the heme and siroheme biosynthetic pathways enhanced the hydrogenobyrinic acid titer to 22.57 mg L−1, representing a remarkable increase of 1356.13% compared with the original strain FH215-HBA. Through multi-level metabolic engineering strategies, we achieved the metabolic balance of the uroporphyrinogen III biosynthesis pathway, eliminated toxicity due to by-product accumulation, and finally achieved a high HBA titer of 22.57 mg L−1 in E. coli. This lays the foundation for high-yield production of vitamin B12 in E. coli and will hopefully accelerate its industrial production.

中文翻译:

使用多级代谢工程策略优化大肠杆菌中的氢比富林酸生物合成。

氢拜仁酸是维生素B12的新型需氧生物合成途径的关键中间体。在大肠杆菌中引入异源的从头开始的维生素B12生物合成途径提供了另一种生产途径。尽管大肠杆菌避免了维生素B12的工业生产商目前面临的主要限制,例如生长周期长,但是氢比丁酸的供应不足限制了维生素B12的工业生产。通过设计体内hemABCD基因的组合核糖体结合位点库,我们发现它们的最佳相对翻译起始速率为10:1:1:5。尿卟啉原III生物合成模块的转录协调是通过hemABCD操纵子的启动子工程实现的。通过RBS工程技术敲除竞争性血红素和西罗血红素的生物合成途径,可将氢比丁酸滴度分别提高至20.54和15.85 mg L-1。血红素和siroheme生物合成途径的组合微调使氢比丁酸滴度提高至22.57 mg L-1,比原始菌株FH215-HBA显着增加了1356.13%。通过多级代谢工程策略,我们实现了尿卟啉原III生物合成途径的代谢平衡,消除了由于副产物积累引起的毒性,并最终在大肠杆菌中实现了22.57 mg L-1的高HBA效价。这为在大肠杆菌中高产维生素B12奠定了基础,并有望加速其工业化生产。分别。血红素和siroheme生物合成途径的组合微调使氢比丁酸滴度提高至22.57 mg L-1,比原始菌株FH215-HBA显着增加了1356.13%。通过多级代谢工程策略,我们实现了尿卟啉原III生物合成途径的代谢平衡,消除了由于副产物积累引起的毒性,并最终在大肠杆菌中实现了22.57 mg L-1的高HBA效价。这为在大肠杆菌中高产维生素B12奠定了基础,并有望加速其工业化生产。分别。血红素和siroheme生物合成途径的组合微调使氢比丁酸滴度提高至22.57 mg L-1,比原始菌株FH215-HBA显着增加了1356.13%。通过多级代谢工程策略,我们实现了尿卟啉原III生物合成途径的代谢平衡,消除了由于副产物积累引起的毒性,并最终在大肠杆菌中实现了22.57 mg L-1的高HBA效价。这为在大肠杆菌中高产维生素B12奠定了基础,并有望加速其工业化生产。通过多级代谢工程策略,我们实现了尿卟啉原III生物合成途径的代谢平衡,消除了由于副产物积累引起的毒性,并最终在大肠杆菌中实现了22.57 mg L-1的高HBA效价。这为在大肠杆菌中高产维生素B12奠定了基础,并有望加速其工业化生产。通过多级代谢工程策略,我们实现了尿卟啉原III生物合成途径的代谢平衡,消除了由于副产物积累引起的毒性,并最终在大肠杆菌中实现了22.57 mg L-1的高HBA效价。这为在大肠杆菌中高产维生素B12奠定了基础,并有望加速其工业化生产。
更新日期:2020-06-01
down
wechat
bug