当前位置: X-MOL 学术Mon. Not. R. Astron. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Intensity and time series of extreme solar-terrestrial storm in March 1946
Monthly Notices of the Royal Astronomical Society ( IF 4.8 ) Pub Date : 2020-06-02 , DOI: 10.1093/mnras/staa1508
Hisashi Hayakawa 1, 2, 3, 4 , Yusuke Ebihara 5, 6 , Alexei A Pevtsov 7, 8 , Ankush Bhaskar 9, 10 , Nina Karachik 11 , Denny M Oliveira 9, 12
Affiliation  

Major solar eruptions occasionally cause magnetic superstorms on the Earth. Despite their serious consequences, the low frequency of their occurrence provides us with only limited cases through modern instrumental observations, and the intensities of historical storms before the coverage of the Dst index have been only sporadically estimated. Herein, we examine a solar-terrestrial storm that occurred in March 1946 and quantitatively evaluate its parameters. During the ascending phase of solar cycle 18, two moderate sunspot groups caused a major flare. The Hα flaring area was recorded to be ≥ 600–1200 millionths of solar hemisphere suggesting that this was an M- or X-class flare in soft X-ray intensity. Upon this eruption, a rapid interplanetary coronal mass ejection with an average speed of ≈ 1590 km/s was launched. Based on measurements in four known mid-latitude and relatively complete magnetograms, the arrival of this extreme ICME caused a magnetic superstorm, which caused an initial phase with the H-component amplitude of ≥ 80 nT, followed by a main phase with the intensity of which was reconstructed as ≤ −512 nT using most negative Dst* estimates. Meanwhile, the equatorial boundary of the auroral oval extended down to 41.8° in invariant latitude and formed a corona aurora in Watheroo, Australia. Interestingly, during this magnetic superstorm, larger magnetic disturbances were recorded at dusk and near the dip equator on the dayside. Its cause may be associated with a strong westward equatorial electrojet and field-aligned current, in addition to the contribution from the storm-time ring current.

中文翻译:

1946年3月的极端太阳地面风暴的强度和时间序列

大规模的太阳喷发偶尔会在地球上引起磁暴。尽管后果严重,但通过现代仪器观测发现它们的频率很低,仅给我们提供了有限的案例,而且仅偶尔地估计了Dst指数覆盖率之前的历史风暴强度。在这里,我们研究了1946年3月发生的一次太阳地面风暴,并定量评估了其参数。在太阳周期18的上升阶段,两个中等强度的黑子群引起了一次大的耀斑。记录到的Hα耀斑面积是太阳半球的≥600–1200百万分之一,表明这是软X射线强度的M级或X级耀斑。喷发后,发射了平均速度约为1590 km / s的快速行星际冠状物质。根据对四个已知的中纬度和相对完整的磁图的测量,这种极端的ICME的到来引起了一场磁暴,它引起了H分量振幅≥80 nT的初始相位,随后是强度为H的主相位。使用大多数负Dst *估计值将其重构为≤-512 nT。同时,极光椭圆的赤道边界在恒定纬度下延伸至41.8°,并在澳大利亚Watheroo形成了日冕极光。有趣的是,在这场强磁暴期间,白天黄昏和靠近赤道的地方记录到较大的磁干扰。它的原因可能与强西风赤道电喷和场对准电流有关,此外还有风暴时环流的影响。这种极端ICME的到来引起了一场磁性超级风暴,其引起的初始阶段的H分量幅度≥80 nT,随后使用最负的Dst *估计将其强度重构为≤-512 nT的主相。同时,极光椭圆的赤道边界在恒定纬度下延伸至41.8°,并在澳大利亚Watheroo形成了日冕极光。有趣的是,在这场强磁暴期间,白天黄昏和靠近赤道的地方记录到较大的磁干扰。它的原因可能与强西风赤道电喷和场对准电流有关,此外还有风暴时环流的影响。这种极端ICME的到来引起了一场磁性超级风暴,其引起的初始阶段的H分量振幅≥80 nT,然后使用最负的Dst *估计将其强度重构为≤-512 nT的主相。同时,极光椭圆的赤道边界在恒定纬度下延伸至41.8°,并在澳大利亚Watheroo形成了日冕极光。有趣的是,在这场强磁暴期间,白天黄昏和靠近赤道的地方记录到较大的磁干扰。它的原因可能与强西风赤道电喷和场对准电流有关,此外还有风暴时环流的影响。其次是主相位,其强度使用最负的Dst *估计值重建为≤-512 nT。同时,极光椭圆的赤道边界在恒定纬度下延伸至41.8°,并在澳大利亚Watheroo形成了日冕极光。有趣的是,在这场强磁暴期间,白天黄昏和靠近赤道的地方记录到较大的磁干扰。其原因可能与强风向西赤道电喷和场对准电流有关,此外还有风暴时环流的影响。其次是主相位,其强度使用最负的Dst *估计值重建为≤-512 nT。同时,极光椭圆的赤道边界在恒定纬度下延伸至41.8°,并在澳大利亚Watheroo形成了日冕极光。有趣的是,在这场强磁暴期间,白天黄昏和靠近赤道的地方记录到较大的磁干扰。它的原因可能与强西风赤道电喷和场对准电流有关,此外还有风暴时环流的影响。在这次强磁暴期间,在黄昏和白天靠近赤道的地方记录到较大的磁干扰。它的原因可能与强西风赤道电喷和场对准电流有关,此外还有风暴时环流的影响。在这次强磁暴期间,在黄昏和白天靠近赤道的地方记录到较大的磁干扰。它的原因可能与强西风赤道电喷和场对准电流有关,此外还有风暴时环流的影响。
更新日期:2020-06-02
down
wechat
bug