当前位置: X-MOL 学术Biocatal. Biotransform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Preparation and characterization of amino and carboxyl functionalized core-shell Fe3O4/SiO2 for L-asparaginase immobilization: A comparison study
Biocatalysis and Biotransformation ( IF 1.4 ) Pub Date : 2020-05-19 , DOI: 10.1080/10242422.2020.1767605
Samir Abbas Ali Noma 1 , Ahmet Ulu 1 , Suleyman Koytepe 1 , Burhan Ateş 1
Affiliation  

Abstract Magnetic nanoparticles are well known as facile and effective support for enzyme immobilization since they have a high surface area, large surface-to-volume ratio, easy separation, a fast and high enzyme loading. This study aims to provide insights on whether acidic or basic modified particles are more effective for L-asparaginase (ASNase) immobilization. Therefore, amino (Fe3O4/SiO2/NH2) and carboxyl-functionalized (Fe3O4/SiO2/COOH) particles were prepared. The functional groups, crystalline structure, magnetic properties, morphology, chemical composition and thermal behaviour of the prepared modified nanoparticles were examined via Fourier-transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), vibrating-sample magnetometer (VSM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX). Under the optimum conditions, the immobilized enzymes were more stable within a certain range of temperatures and pH values in comparison to free enzyme. On the other hand, the immobilized enzymes showed greater stability after incubation for 3 h at 50 °C. The free enzyme maintained only 30% of its initial activity for 4 weeks at 4 °C, while Fe3O4/SiO2/NH2/ASNase and Fe3O4/SiO2/COOH/ASNase retained more than 78.9% and 56.5% of initial activities under the same conditions, respectively. Moreover, Fe3O4/SiO2/NH2/ASNase (77.2%) and Fe3O4/SiO2/COOH/ASNase (57.4%) displayed excellent operational stability after 17 repeated cycles. These findings suggested that the Fe3O4/SiO2/NH2 and Fe3O4/SiO2/COOH may be utilized as efficient and sustainable supports to developed immobilized ASNase in several biotechnological applications.

中文翻译:

用于固定 L-天冬酰胺酶的氨基和羧基功能化核壳 Fe3O4/SiO2 的制备和表征:比较研究

摘要 磁性纳米粒子具有表面积大、比表面积大、分离容易、酶载量快、载酶量高等优点,是众所周知的酶固定化载体。本研究旨在提供有关酸性或碱性改性颗粒对于 L-天冬酰胺酶 (ASNase) 固定化是否更有效的见解。因此,制备了氨基 (Fe3O4/SiO2/NH2) 和羧基官能化 (Fe3O4/SiO2/COOH) 颗粒。通过傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、振动样品磁强计(VSM)对制备的改性纳米粒子的官能团、晶体结构、磁性、形貌、化学成分和热行为进行了检测。 )、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDAX)。在最佳条件下,固定化酶在一定温度和pH值范围内比游离酶更稳定。另一方面,固定化酶在 50°C 孵育 3 小时后表现出更高的稳定性。游离酶在 4°C 下 4 周仅保持其初始活性的 30%,而 Fe3O4/SiO2/NH2/ASNase 和 Fe3O4/SiO2/COOH/ASNase 在相同条件下保留超过 78.9% 和 56.5% 的初始活性, 分别。此外,Fe3O4/SiO2/NH2/ASNase (77.2%) 和 Fe3O4/SiO2/COOH/ASNase (57.4%) 在 17 次重复循环后表现出优异的操作稳定性。这些发现表明,Fe3O4/SiO2/NH2 和 Fe3O4/SiO2/COOH 可作为有效和可持续的支持物,在多种生物技术应用中开发固定化 ASNase。与游离酶相比,固定化酶在一定温度和 pH 值范围内更稳定。另一方面,固定化酶在 50°C 孵育 3 小时后表现出更高的稳定性。游离酶在 4°C 下 4 周仅保持其初始活性的 30%,而 Fe3O4/SiO2/NH2/ASNase 和 Fe3O4/SiO2/COOH/ASNase 在相同条件下保留超过 78.9% 和 56.5% 的初始活性, 分别。此外,Fe3O4/SiO2/NH2/ASNase (77.2%) 和 Fe3O4/SiO2/COOH/ASNase (57.4%) 在 17 次重复循环后表现出优异的操作稳定性。这些发现表明,Fe3O4/SiO2/NH2 和 Fe3O4/SiO2/COOH 可作为有效和可持续的支持物,在多种生物技术应用中开发固定化 ASNase。与游离酶相比,固定化酶在一定温度和 pH 值范围内更稳定。另一方面,固定化酶在 50°C 孵育 3 小时后表现出更高的稳定性。游离酶在 4°C 下 4 周仅保持其初始活性的 30%,而 Fe3O4/SiO2/NH2/ASNase 和 Fe3O4/SiO2/COOH/ASNase 在相同条件下保留超过 78.9% 和 56.5% 的初始活性, 分别。此外,Fe3O4/SiO2/NH2/ASNase (77.2%) 和 Fe3O4/SiO2/COOH/ASNase (57.4%) 在 17 次重复循环后表现出优异的操作稳定性。这些发现表明,Fe3O4/SiO2/NH2 和 Fe3O4/SiO2/COOH 可作为有效和可持续的支持物,在多种生物技术应用中开发固定化 ASNase。
更新日期:2020-05-19
down
wechat
bug