当前位置: X-MOL 学术J. Membr. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Opportunities for high productivity and selectivity desalination via osmotic distillation with improved membrane design
Journal of Membrane Science ( IF 8.4 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.memsci.2020.118309
Sangsuk Lee , Anthony P. Straub

Abstract Osmotic distillation (OD) membranes offer selectivity based on vapor pressure and therefore highly reject all non-volatile contaminants. Despite the advantage of high selectivity, OD membranes have not been widely implemented due to poor water fluxes and detrimental heat transfer effects. In this study, we use element- and module-scale computational modeling to examine how OD membrane optimization can improve water treatment performance and compare the productivity of simulated OD membrane modules to conventional FO systems. Several OD membrane parameters are optimized, including thickness, thermal conductivity, porosity, and pore diameter. Among the membrane properties explored, we identify that reducing the OD membrane thickness is the most crucial factor in enabling high performance, and a membrane thickness of approximately 0.1 μm is needed to achieve water fluxes exceeding those of current commercial FO membranes. Thin membranes are also critical to minimize detrimental heat transfer effects in large-scale systems. Comprehensive comparison of OD with FO membranes showed that optimized OD membranes can outcompete high-performance FO membranes in maximum achievable water flux (25.3 vs. 18.6 kg m−2h−1 for OD and FO membranes, respectively) and module-scale water recovery (0.28 vs. 0.18). Overall, the results of this work demonstrate the promise of OD membranes to overcome the selectivity limitations of conventional polymeric membranes and offer guidelines for future OD membrane design.

中文翻译:

通过改进膜设计的渗透蒸馏实现高生产率和选择性脱盐的机会

摘要 渗透蒸馏 (OD) 膜提供基于蒸气压的选择性,因此高度排斥所有非挥发性污染物。尽管具有高选择性的优点,但由于水通量差和不利的传热效应,OD 膜尚未得到广泛应用。在这项研究中,我们使用元件和模块规模的计算模型来检查 OD 膜优化如何提高水处理性能,并将模拟 OD 膜模块的生产率与传统 FO 系统进行比较。优化了几个 OD 膜参数,包括厚度、热导率、孔隙率和孔径。在探索的膜特性中,我们发现降低 OD 膜厚度是实现高性能的最关键因素,膜厚度约为 0。需要 1 μm 才能实现超过当前商用 FO 膜的水通量。薄膜对于将大型系统中的有害传热影响降至最低也至关重要。OD 与 FO 膜的综合比较表明,优化的 OD 膜可以在最大可实现的水通量(OD 和 FO 膜分别为 25.3 和 18.6 kg m-2h-1)和模块级水回收率方面胜过高性能 FO 膜( 0.28 对 0.18)。总的来说,这项工作的结果证明了 OD 膜有望克服传统聚合物膜的选择性限制,并为未来的 OD 膜设计提供指导。OD 与 FO 膜的综合比较表明,优化的 OD 膜可以在最大可实现的水通量(OD 和 FO 膜分别为 25.3 和 18.6 kg m-2h-1)和模块级水回收率方面胜过高性能 FO 膜( 0.28 对 0.18)。总的来说,这项工作的结果证明了 OD 膜有望克服传统聚合物膜的选择性限制,并为未来的 OD 膜设计提供指导。OD 与 FO 膜的综合比较表明,优化的 OD 膜可以在最大可实现的水通量(OD 和 FO 膜分别为 25.3 和 18.6 kg m-2h-1)和模块级水回收率方面胜过高性能 FO 膜( 0.28 对 0.18)。总的来说,这项工作的结果证明了 OD 膜有望克服传统聚合物膜的选择性限制,并为未来的 OD 膜设计提供指导。
更新日期:2020-10-01
down
wechat
bug