当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An investigation on the friction in a micro sheet metal roll forming processes considering adhesion and ploughing
Journal of Materials Processing Technology ( IF 6.7 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.jmatprotec.2020.116790
Zhutian Xu , Jihui Huang , Mengyun Mao , Linfa Peng , Xinmin Lai

Abstract Due to the lack of thorough understanding of the frictional behavior in microforming processes, there is a significant challenge for the process design and optimization towards smart manufacture of micro products. In the present study, the challenging issue of friction in microforming was revealed from an instance of a micro sheet metal roll forming process, which has been found to be an efficient method to fabricate micro channel features with a high aspect ratio. Based on the experimental observations and analysis, the forming process and final product geometry are revealed to be sensitive to the friction behavior. The contact pressure between tool and sample was highly uneven and variable during the process, indicating a proper description of friction behavior is vital for the accurate process prediction and optimization. In the experimental study, significant ploughing scratches with the maximum depth of 5−7 μm were observed on the formed samples, especially with the increase of rolling depth. The ploughing effect, which could be neglected in macro scale forming processes, was revealed to affect the friction force during the micro sheet metal roll forming process, and further influence the thickness distribution. To deal with that, a friction model considering both adhesion and ploughing effects in friction was developed. By incorporating the friction model into FE simulations, satisfying agreements in forming profile, ploughing depth and thickness distribution between calculated and experimental results were observed.

中文翻译:

考虑粘附和犁削的微型金属板轧制过程中的摩擦研究

摘要 由于对微成形过程中的摩擦行为缺乏透彻的了解,微产品智能制造的工艺设计和优化面临重大挑战。在本研究中,微成形中摩擦的挑战性问题从微薄金属辊轧成形工艺的实例中得到揭示,该工艺已被发现是制造具有高纵横比的微通道特征的有效方法。根据实验观察和分析,成型过程和最终产品的几何形状对摩擦行为很敏感。在此过程中,工具和样品之间的接触压力高度不均匀且可变,这表明摩擦行为的正确描述对于准确的过程预测和优化至关重要。在实验研究中,在形成的样品上观察到最大深度为 5-7 μm 的显着犁划划痕,特别是随着轧制深度的增加。研究表明,在宏观成形过程中可以忽略的犁沟效应会影响微薄板金属辊轧成形过程中的摩擦力,并进一步影响厚度分布。为了解决这个问题,开发了一种同时考虑摩擦中的粘附和耕作效应的摩擦模型。通过将摩擦模型纳入有限元模拟,观察到计算和实验结果在成形轮廓、犁深和厚度分布方面的令人满意的一致性。尤其是随着轧制深度的增加。研究表明,在宏观成形过程中可以忽略的犁沟效应会影响微薄板金属辊轧成形过程中的摩擦力,并进一步影响厚度分布。为了解决这个问题,开发了一种同时考虑摩擦中的粘附和耕作效应的摩擦模型。通过将摩擦模型纳入有限元模拟,观察到计算和实验结果在成形轮廓、犁深和厚度分布方面的令人满意的一致性。尤其是随着轧制深度的增加。研究表明,在宏观成形过程中可以忽略的犁沟效应会影响微薄板金属辊轧成形过程中的摩擦力,并进一步影响厚度分布。为了解决这个问题,开发了一种同时考虑摩擦中的粘附和耕作效应的摩擦模型。通过将摩擦模型纳入有限元模拟,观察到计算和实验结果在成形轮廓、犁深和厚度分布方面的令人满意的一致性。开发了一个摩擦模型,同时考虑了摩擦中的粘附和耕作效应。通过将摩擦模型纳入有限元模拟,观察到计算和实验结果在成形轮廓、犁深和厚度分布方面的令人满意的一致性。开发了一种摩擦模型,该模型考虑了摩擦中的粘附和耕作效应。通过将摩擦模型纳入有限元模拟,观察到计算和实验结果在成形轮廓、犁深和厚度分布方面的令人满意的一致性。
更新日期:2020-11-01
down
wechat
bug